DDT User Guide

Version 2.4

S nNnes

Distributed Debugging Tool v2.4

Contents
COMLEIILS. ..ttt et et et et et et et et et e bt e b e e b e e b e e b e e b e e b e e bt e bt e bt e bt e bt e st easeeaseeaseeseeaseenseeseenseeesaneeeesan 1
1 TIETOAUCTION. ¢.. ettt ettt ettt ettt et e a et et e ae s b et et et e st s be b et eutebe et e et e sabeeabeenee 6
2 Installation and CONfigUIAtioN........ccceevverieririerrierieririeeteseeeeeeseeseseeeessesreessessessesseessessesssessssasssseessseess 7
2.1 INSEAILALION. c..c.uerventeteniettetetet ettt ettt ettt ettt ettt b et et et e bt s bbb e e e st s bt e b e ae e bt et e e et e ae b e e be e b s 7
2.1.1 Graphical INStAlL......cc.eeierierieeiiiieierieete ettt ettt st be st ettt s et e sbe st st e seesnnees 7
2.1.2 Text-mode INSTAll.......cooiiiiiieeee ettt ettt et sb st s 9
2.1.3 LICEINCE FiLES... ettt ettt ettt et et b sttt be st et e e e st e e s e e e sabe s 9
2.1.1 FlOAtiNg LICEIICES. ...ccveeterrerrerreereetetesteseestessessesseessessessesssessessasssessessessesssessessessssssessessssssssesssses 9
2.2 CONTIGUIALION.veiveeuereeeterteetetesteseseetessesreetessessesseeseessassasssessessessesseessessessesssessessessssesssssessssesssees 10
2.2.1 Site Wide CONfigUIation.........cocererrierieririerrienienteterteseseestessesessessessessesssessessesssessessseesssnesnns 14
2.3 Advanced Configuration - Integrating DDT With Queuing SyStemsccccecveveeverrerereeesreesnennn 15
2.3.1 The TemPlate SCIIPL.....cccrieiieeeeeierieseeseeseese et e e e e e e esre e e esseesseesseesseesseessessseessessssesseessennn 15
2.3.2 OpenMPI, Altix, Blue Gene/P and Cray MPT.........ccccevieviriirrerieeeesieesieeieesee e sve e eeees 16
2.3.3 Other MPIS......uiiiieieieeeeee ettt ettt ettt ettt et ettt et et e st e be st et et ebe et e satesatas 16
2.3.4 SCAlAr PrOGIAIMIS.cccviriireieieienieetetenteseetestesesseetessessasssessessessesssessessesssessessessasssseesssessssnesnns 16
2.3.5 DefiNiNg INEW TaS.....cceectereririirieniineetertesieseetestesteseesessessesssessessesssessensessesssessessassssssseesnnns 16
2.3.6 Configuring Queue COMMANGS..........ccererrerrerrerererreriesteeeessesseseesssessessessesessessessessesssssessennes 18
2.4 Optional CoNfiGUIAtiON........ccceieuirierieireetetee ettt ettt ettt et et s e te st e e ssessestentenessesseenseenseensean 20
2.4] SYSEEIMN.cnuieietteeitieieite et eete e et e et e st e st e e s ate e s bt essae s ste s st e eesbeessbae s bae s ste s sbeeaabaesabaaeeanrbtaaeeeann 20
2.4.2 JOD SUDIMISSION. ..c.eeutiuiiirtiieiteteieete ettt ettt ettt ettt e b et sttt s bt s e e s it e st e st e s st e eae 20
2.4.3 ReMOte LaUNCH....co.eouiiiiiiriieetee ettt ettt sttt ettt et et e s 20
2. 4.4 FONS & EdItOr....ceiiriiriiieieieiert ettt ettt ettt s e et b et sa et sbe s et et eseas 20
2.5 GEttNG HEIP. .. eoueeieieeiteteee ettt sttt ettt ettt s st et e b e s bt et et e bt s ae et e be s be e s beesans 21
3 SHATTNE DD T ...ttt ettt ettt ettt et e e be e besbe e b e e be e b e e b e esbe e be e bt e sanreeesnrees 22
3.1 RUNNING @ PTOZIAIM..cc.uutiiiieiiiiieitenieeete ettt sttt st e st e s s te s sbe e sbeesbae s saessseessasseaaeesssssssnnaeeas 23
3.2 Notes on the MPICH Standard and OpenMPI OptiOnS........ccceveevverierresreeseesiesesreeseessveessnnesseeenns 25
3.3 Debugging Single-Process PrOZIaITIS.cccievverieriererreenieneneetesiesseseessessessesssessessesssesssessssesssnes 26
3.4 Debugging OPenIMP PrOGIamS........ccccecterieriirirrierienerteniesiesestessesessessessessesessessasssensessessesssesnns 26
3.1 Debugging Multi-Process NON-MPI PrOGIaIMS........ccoceetrterterererntenieneseeseesseseeseessesseeessseessseesnne 27
3.1 Debugging MPIMD PIOGIAIMIS.cccceeueruerirrienienientetesiesie et ete st st eateste st satetesaesse et et e ssesaeeeeneeesnees 28
3.1 OPENiNgG A COTe File....ccuiiiieiieiieiieieeteeteeteetee et st st este st e st e seesssesssesssesseesssesseesssesseessnssseens 29
3.2 Attaching To RUNNING PrOZIaImS........cccciiieeiirieniiniesierienseseetessesesseessessessessesssessessessasssessessssessnnes 29
3.2.1 Using DDT Command-Line ATGUMENTS........cccccerrerrterererreereessesesseessessessesssessessessasssessssesssnns 31
3.3 Starting A JOD IN A QUEUEccevierieiirieierientrtesteste st e stessestesstestestesseestessessasssessessesssensessessesssennes 32
3.4 Using Custom MPT SCIIPLS...ccueeitirriieriieriteceeceeteesteeteerte et et st et e vt eereesreesseesessesseeessaseeessaneens 32
3.1 Starting DDT From A JOD SCIIPL.....cccirtrieiiiririeteiereete ettt ettt sttt sttt 34
3.1 Choosing The Right DeDUGEET........c.ccciiviiiiiiiiieiieeeceee ettt sressvesaesste e s e bae e s esnenas 35
3.2 Notes on X Forwarding or VINC fOr TEIMOtE USETS........cceeverrerreneseeseesresesseessessesesssessessssesssseesnes 35
1 DT OVEIVIEW....euitiiiieuieieetetetetetesteste st et saeste st et et ebeste st et ebe b et et et sbesb et et entesesbe s et entebesbententenseensean 37
1.1 Setting The Font and Tab SiZeSccccvvirrieriririeienireeterieee sttt sttt siese e tessesreseessaessseees 38
1.2 Saving And Loading SeSSIONS.........cccerertrrierierirteriereeterteste st eteteste st eeestesse st estesseesbaesseesneens 38
1.3 SOUICE COME....c..eeeiiiiieieeieete ettt ettt ettt et et s e et et e bt s ae et et e s bt eat et e besbe et e bt e e steeeneeesneeens 38
1.4 Finding L oSt SOUICE FIlS.....ccuieciieiieieeieeiecieee ettt ete et ete st e s tesreestessaesraessaasseesesseeesannes 38
1.5 Finding Code OF Variables.........cccceciererieerieniineneetestesestessessesseessessessessssssessessesssessessessessssessssesas 39
1.6 Jump To Line / Jump TO FUNCHON.....c..ioiiiiiiiieriieiteeiteeeeeteeeeete ettt iee e e e e s e areeeeeeeees 39
1.7 Editing SOUICE COUE.......cecverieeieieierieetenieneseestesiesseseetestessesstessessessaessessessesssessessesssessssesssaessseens 39
2 Controlling Program EXECULION........ccctiriririerierieneetetesieet ettt ettt st et sae st et e s sre et e ssaeesaees 40
2.1 Process Control ANd ProCeSS GIOUPS.........ccceeeuereverrieerieesteeseesteesseesseesesssesssesssesssesssesssesssssssessssnes 40
2.1.1 Detailed VIBW....coieiieieieteeee ettt ettt ettt sttt st st e st e s bt e e be e e nneeeane 40
2.1.2 SUMIMATY VIEW....ttiiiiieiiieriiieniitereteeeteesitteesstessutesssteesstessseessseessssessssessssaessstesssssseaaessssssnsseaeees 41
2.1 FOCUS COMUTOL......eeeuieiieiietiteteteeete ettt ettt ettt et ettt ettt b sttt e st s bt e e et ebesaesseenbeebeens 41
2.1.1 Overview of changing fOCUS.coctvvteriiririierererteteeet ettt e et e ssesbeesnes 42
2.1.2 ProCeSsS GIOUP VIEBWET.......coiiiiriiriiintetirieniteteetesieetetesae st etetesse st eeesresaeseesesnessneesneesmeeenne 42
2.1.3 BIEAKPOINTS. ...ueetieteecieeieeeesie et este et e st esteesse e seesse e seesseesseesseeseesssessesseesseesseesssssesensssesensnsees 42

© 2009 Allinea Software 1

Distributed Debugging Tool v2.4

2.1.4 COAR VIBWET....c.ueruieieieiiritesteniestesteste st st et estestt st e sesbesutetessessasnsestessesasensessassnsaesseesnseessseesnns 42
2.1.5 Parallel StACK VIBW......oouiiiiiiiieiieteiet ettt ettt ettt ettt et sb e et sae e et 42
2.1.6 Input and Output (stdin, stdout and SEAEIT).......c.cecveerveerierrierrieerieeieeeeeeeeeeeeeeeereeeeereeeeeeeeas 42
2.1.7 Playing and SEPPINEG.......ccceeeerreerreriereerieseseestesseseseessessessesssessessessesssessessessasssesssssssssssssssenns 43
2.1.8 Step Threads TOGEThET.........cccueierieriirieieriereneetesese et eeesteseseestestesre e sessessesssessessasssessssnennns 43
2.1.9 Stepping Threads WINAOW........ccccecerirerrierieniinteieniesesteseesiesesstessesressessessessssessssessnsessnsessns 43
2.1 HOUTKEYS..ccueetieteieieeteetetesie ettt s e et et ste st et et s e st et e st s st et e b e s st s atesbesbesat et e sesatentensesbeenaentensesaes 44
2.2 Starting, Stopping And Restarting A Programcccccecererntenienenientenenenteeesiese et 45
2.3 Stepping Through A Program.........ccceecieecieeieeieeieeieeieeteeteeteeteeteetesssesstesseesssesseesssesssesssessseens 45
2.4 STOP MESSAZES. c..uveeeurieriiereiteeitteeitteeittesete e e bt ee bt e e bt e s stesssbessssa e s baesstessstesssseesssaesstesseessseesssnssaaens 45
2.1 Setting BreaKPOINTS. ..cccevecieeirerrierieeereesieseseestessesseseessessessesssessessasssessessessesssessessasssessessessssessnnns 46
2.1.1 Using the SOUIrCe Code VIBWET........cccurcerrierrereritirenienestesessesssessessesesssessessessssessssessssassssaesns 46
2.1.2 Using the Add Breakpoint WiNAOW.......ccceceeerierieieneninienieeneniesteneeesesieteeeeesesee e s e 46
2.1.3 Pending BreakpOints........cocciiireririerienieeitetestesie ettt ettt st et st ettt b st s e b e eane 47
2.2 Conditional BreaKpOints.........cccceeeereerreereesieecieesieesieesieeseesteesseessesssesssesssesssesssesssessssesssesssessesnsees 47
2.3 SuSPeNding BreaKPOiNtS........cceceereerierereeeerieseseetestesseseessessessesssessessessasssessessessssessssessssessssessnnes 47
2.4 Deleting A BreakPOiNt.........cceciireeierierinerieriesesesstesiesseseessessessesssessessessesssessessessssssessessssessssssssees 47
2.5 Loading And Saving BreakpOintS........cceceeveeieririerrierieneritenieneseessessesesssessessessesssessessesssessessessasnes 47
2.6 Default BreaKPOintS........ceceririirierierirteieriesteteste st steste e ste st eeessessestessessesssensessessseessnsessnsessnnes 48
2.6.1 SLOP AL EXIt/_EXItieueereiereiieeeriieriieeiierstersiteeesttessseeesseesssaeesseessseessseessssessssesssseessssseasssssssssenaass 48
2.6.2 Stop at abort/fatal MPI EITOT.......c.ccceviieievieiiesieetesiesieeeeeessestesseessessessessessessessasssessessssssssssenns 48
2.6.3 Stop on throw (CH+ @XCEPLIONS).....ecieierieerieeeterteeeetesreseeeessessesreesesseseesseesssssesssesssseessseens 48
2.6.4 Stop on catCh (CH+ eXCEPLIONS)....ecvirreeerrrerrerrertestesiesestessesseeeessessesesssessessessssesassessssessssasens 48
2.6.5 STOP A FOTK....eetiriieieierierteterteseetet sttt e sttt e et e s e s e et e st essesssessessasssessessessesssensensessseesnnes 48
2.6.6 STOP BL EXEC..uveuiiurireriienteterteeiteteeteseent et eeae st et et e st sat et e se s st st e e e st e st e e e se e st et esesmeeeenneesnneenane 48
2.7 SYNCHTONIZING PIOCESSES. ... cervieutiieiiriietetesteete ettt et et e st e et et e et e st et et sb e et e b esbesae st et e e 48
2.8 SEttiNG A WALCH.....iiiiiieeieeieeteeeeteee ettt te e te et e et e et e et e et e esae et e ssteesaesssesssesssaesseasensseeenn 49
2.9 Examining The Stack FTAIME.........ccccieeereerierieneseetesiessessessessesseesessessessssssessessessssesssessssessssessnnns 49
2.10 ALIGIN STACKS. ...ctieterieieriieerierieeeetete e st e st esteste s e etessesseeseessessasseessessessasssessassesssessessssessseessssesnnes 50
2.11 “Where are my processes?” - Viewing Stacks in Parallel............ccccoceveveneninennncnninncnncneene. 50
2,111 OVEIVIEW....couiieuieeieeieeieeteeteetestestestesutestesatesasesasesasesasesasesasesasesasesasesasesntesasesnsesnseessnnsesens 50
2.11.2 The Parallel Stack View in Detailcccoceveriiiieniiniinieteeneeteeeete et 50
2.1 Browsing SOUICE COQE.......cccueeeeeirriereesieeeeeteseeseestesstesseesssesssesseesssesssesseesssesssessssssesassseesesssens 52
2.1 Simultaneously Viewing MUltiple Files........cccccviieirrierieniinierieseseetesiesieseeeessesesssessessessesssessnnes 53
2.2 SigNal HANANG......cccvecieerieeesierieeieteieste st et estesteesestesseeeeeessestasssessessessesssensessesssensessessesssensessessens 54
1 Variables AN Daata........coueveeererierieieinienieteteeeeste sttt ettt sttt et st et et et beste e et e b besatesaeesaees 56
1.1 CUITENE LN ..ttt ettt et ettt sttt e sae st et en e e ne e saneesanee e 56
1.2 LOCAl VaTIADIES.....etiiieieieeieetetee ettt ettt ettt ettt et et sb et e et e et e e s b s 56
1.3 Arbitrary Expressions And Global Variables............cccooevieiiiieiiinniieieeeeieeeeee et 56
1.4 Help With Fortran MOGUIES...........ccuecverieeeierieniceectesieeeeeessesiesseessessesesssessessessesssessessesseessesssseens 57
1.1 VIeWING ATTAY DALA....cccctiiiieiiieieieeeteeeseeette ettt et e ebeesteesbtesestessatessateesuseesaseesstesentaeeessasnse 58
1.2 Changing Data ValUesS..........cccerirerrienienireeieneneetesiesiessessessessesssessessesssessessessesssesssessssesssssesssees 58
1.3 Viewing Numbers In Different Bases.........cc.cocevuerirrerinieniennenenieneinenenieeeesieseesie e 58
1.4 EXaMINING POIMLETS....c.tiiiiiiiiierieriienteneesttesteetestessee st e st e sreesseesueesmeesseesseesmeesseesseesseesneessneneesans 58
1.5 Multi-Dimensional Arrays in the Variable VIEW.........cccecieeiiriieniienienieceecteeeeeeeseesesseeseeeeeeans 59
1.6 Examining Multi-Dimensional ATTAYS.......ccccceeeverrererreereeresessesssessesesssessessessessssssessessasssesssssssseses 59
1.6.1 EXPTIOSSION. ...eeiieieieieiiteieteeeteeettestte ettt esteesteesateesbee s stesate s seessseeesnseesaseesstesntessntessssnsseeees 60
1.6.2 DIIMENSIONS. .. .cecteruernteteetenrertetentertetete st st seesressteeessesst st eeesses st eatesesseestesensesnteneensessesneensens 60
1.6.3 AZEregate FUNCHOM.cceetitieiirierieteeereeteteee ettt ettt re st esaesse s aese st emeeens 60
S i) OO 60
16,5 RESUILS. ..ttt ettt a ettt et esbe b e et et et e s bt et et e e e abeesabeenas 61
1.6.6 STALISTICS...eeverrerreeieeieeteett ettt ettt ettt s st e e st e st st s st e st e st e saeesaaessaesmaeesamnaeesanraeesannanes 61
16,7 EXPOT . cueieiiteiiteeeteeete ettt sttt sttt et e e et e e s et e sabte s ate s ateesateesabeesabeesabte s stessnteesseaesasaeeessnnnraaees 61
1.6.8 ViISUALISALION. c..cuveuteuerierieietetet ettt et ettt ettt et et be et et st b et et e e e b esbeaeneens 61
1.6.1 AULO UPALE.....cueiieiiiiieieenieeetetee ettt et ettt sttt sb ettt e st s be st et et esesbe e sbe e beebeenne 62
1.7 Cross-Process and Cross-Thread COMPATiSON.........ccueeeueereerieesieerieesieesteesseesreesseessesssesssseeesssesesnns 62
1.8 AsSigning MPI RANKS........ccciieiicieciieseecieeseecie et ettt et este s ve s e s aesssesaaesseesessseessaesssseesensssasanne 64

© 2009 Allinea Software 2

Distributed Debugging Tool v2.4

1.1 VIEWINE REGISIETS. ...cceeruieiiiirieriieteieeeeteteetteit et ettt sttt te s et eesae s st nesae st eeesaneesmnee e 65
1.2 Interacting Directly With The Debugger.........ccccooeririrriinieninietenentetesteseete ettt 66

2 Program INPUt ANA OULPUL.......ceeeieeieeieeeeeeestesteseesteeeeseeseesssesseesssesssesseesssesssesssesssesssssssessssseessnnes 67
2.1 Viewing Standard Output ANd EITOTcceccveviirierirriesiereeeerieseseseessessesreesessessesseessessessessesssessees 67
2.2 Displaying Selected PrOCESSES.......ccuecvirereeriiriereeresieseseestessessessessessesssessessessessessessessesssessassessnns 67
2.3 SAVINEG OULPUL.ccuutteeurieeieeniterrteeetteeiteesttessueeesuteesstesseessseesaseesssseessstesseessseessseesssseesseessseessseesseens 67
2.4 Sending Standard Input (DDT-IMP)cc.coeiieiiminiieieineneetetrenerteteeee et saee s st 67

3 MESSAZE QQUEUES.......eeveereereeteeteeteesteesteeste e bt e sueesstesbeesseeaseeseease e seeaseesseessee st e st eastesseeseeseeseeseessansens 69
3.1 Viewing The Message QUEUES..........cceecueerueerieerieerieerieesteesseessesssesssesssesssesssesssesssesssessssssesssssessesssens 69
3.2 Interpreting the MesSage QUEUES.ccvecverieeeereerreseseessessesseessessessessesssessessessessssesssssssssesssssssnnns 70
3.3 DRAAIOCK. ...ttt ettt ettt e b et ettt b et et et eaeeat 70

4 MemOTY DEDUGZINE.....ccveciirieriiieiireeteterese sttt et et sae et et e sse st et et essasssessessassasssenssesnssesnssesnnns 72
4.1 CONTIGUIALION......cectiriirieieiertieterteseet et ste et et e tesbe st e tessesae st e sessesssessessessesnsensesssaesnsaesnseesnsaesnns 72
4.1 FEAUTE OVEIVIBW.....eiiiiiriiriieriteniientestesteseesatestestesstesstesatesatesatesueesaeesmeesmeesseesneesntesneesstesnseeessanens 73
4. 1.1 EITOT TEPOTTIME. .. eeieveeerieeieiereiiereieesteeesteessaeessseesssseesseesseessssessssesssseessseessseessssesssessssesssseesssees 74
4.1.2 CheCK Validity....cveceeieeesiirieeeeiereseeeesiesesee e ste s esesestessesseessessassesssessessesseessessssesssessssesassesns 74
4.1.3 View Pointer Details.........ccooeirerieriiirieeteiesi ettt ettt 75
4.1.4 Writing Beyond An AllOCAted ATa........ccecverveririirnierierteieniereetesteseseeeessessessessessessssesssees 75
4.1.5 Current MemOTIY USAZE........ccceeirierirenieteeeeneeteteseestetesesseseestesse st sseessesntesmseesneesneesneens 75
4.1.6 MEIMOTY SEALISTICS. ccuveeeuerererrrerireriteerteerteerttesteesteesttesteesessesseeseeseenseeaseeasesasesaseesareeessasenessanees 77

5 ChECKPOINTING.....ccctieieeieeieeie ettt e te e rte e e e e e te e te et e e aeesseesseesseessasssasssasssasssaensaeessseesanssaesannees 78
5.1 What Is CheCKPOINtING?.......cciiieeieriereseeierieseseestestesressaessessesssesessessesssessessessssssessessesssessessassesnens 78
5.2 Checkpoint SUPPOTt IN DD Tccoiiiiieiirieeieieiese sttt se et estesreseesteste s e ssessesvesssessessasseessessesanns 78
5.1 HOW T ChECKPOINL...c..eeuiiieriirerierienertetesieetestesiestestessessesseessessessasssessessessesssensessasssessessesssessnnns 78
5.2 Restoring A Run-time CheckpPOint.......cccceererierirrinineieieeneeeeees ettt 79
5.3 Restoring A Persistent ChecKPOINt..........cceceririrniireninieteeneete ettt ettt s 79

6 Advanced Data Display and C++ STL SUDPPOTLceccueevieeiieriieniieieeieeieesieesteeieesaeesaeeseeessesssesssnneeesenns 80
6.1 Using The Sample Wizard LiDIary.........ccceeceeeireniinieesineseeiesieseseessesesessessessessesssessessessesssesses 80
6.1 Writing A Custom Wizard LiDIaryccccceeveevierienenensiesieseseesresesesssessesessessessessessessessesssessenses 81
6.1.1 Theory Of OPeTation........cccvceecieriererierrienieneritestesiesessessessesesssessessesssssessessesssessessassssssessesssns 81
6.1.2 Compiling A New Wizard LiDIary......cccccceceereriererinienenieeeenenieseeeeeereseeeeeenesreseeseeeeseesnee 83
6.1.1 Using A New Wizard LiDIrary........ccocereeiriinieninieieeneeteteeetet ettt et 83
6.1.2 The VirtualProcess INTETTaCe..........coirierieieuieeecieeee ettt et e 83
6.1.3 The EXPIresSSion Class.......ccuecuereeirreesreresesreessesiessesssessesessesssessesesssessessessessssssessassesssessessessnnns 85
6.1.1 Final String-Enabled Wizard Library EXample.........c.cccevervtrrinenieeriinieneneenienieeeieesieesneens 85

7 THE LICEIICE SEIVET.....coutrtiieieuieiirteietetet ettt ettt ettt be sttt e ettt e e et e st s b e be it et e sasesabesubesnbesasenas 88
7.1 RUNNING TR SEIVET......cootiriiiiiieniieteieieeeet ettt sttt st ettt e st st e s s st e saesbaesrsaessnnessnees 88
7.2 RUNNING DDT CIIENLS...c..ciitirtiiieienieetetese ettt ettt st et e st e sat st e stesbe st et e see s bt et e beesneeesneeesnees 88
7.3 LiOZEIME..ccuteieiiiiieieiiteeie et ee it e e stesete e st e e s bt e s bt e s sae s s beessbaeeabee e bte e st e e sbeeeabaeenbae e tnbaaaeeesnnanrraaaeeas 88
P o111 (=2 Vo Yo) = TSR 88
7.5 Adding A NEW LICENCE.....ccviirirrieeerienteeteteseseetesteseseesestesseessessessesssessessesssessesseessssessssessssessnses 89
7.6 EXAIMIPLES....cveeiiieiirtetenieetetetesest st e steste et et estesseestesesbesseessessessasssensensesssensensessesssensessseesnssesssses 89
7.7 Example Of Access Via A FIreWall.......cccocovriririinninineictneneeteeeesresteteeeee e s 89
7.8 Querying Current LiCeNCe SEIVET STAUS......cccertertereereereereeneeseeseeseeseesseesseesseesseesseessesssesesss 90
7.9 Licence Server Handling Of Lost DDT CLENLS.......cccccueceieeeerieseseeeerieseseesessessessessessessssessnens 91

8 Using and Writing PIUgins fOr DD T.........ccceciiiieieririieieiesieseseestesieseesessesresseessessessasssessessessesssessensns 92
8.1 SUPPOTLEA PIUGINS....ccuiiiieiirieeieieeestetere et etet e et e e e teste s e et essestesseessessessasssessassessesssesssnsassessnseennns 92
8.1 INStAlliNg @ PIUGIN......cecvirieriiieiiriertetesereeteste st e et s e st et e st e s e e e e st e ssessaessessasssesseesasaesnseesnsnesnns 92
8.2 USING @ PIUGIN. ..ottt ettt ettt sttt et et a e et s bt s s e smnes 92
8.1 WIIING @ PIUGIN.....iuiiiiiiiieteteee ettt ettt ettt ettt s st et sae s be e s ne e e s 92
A SUPPOTEA PlatfOrmIS. .. .ecuveieeiieieeieitesieeeetetes ettt e te et eteste e e et e te s e e e essesesseessessessassssssensessassaessseenns 94
B MPI Distribution Notes and KNOWN ISSUES.........ccccverieririiririnieieteiesie ettt s st 95
Bl BPTOC ittt ettt sttt st e s e st s bt e s a b st e et e e bt e et e s e b e e e b e e e bt e e bae e ateesareeeareas 95
B2 BUIL MPL...iieeeetetet ettt ettt sttt b et sttt sb ettt e st b st e b et e st et e satesatesmtesates 95
B3 HP MPL ..ttt ettt sttt b ettt st e b e bttt be e s b s aeenae s 95
B4 INEEL MIPLL....oieeeee ettt ettt et et s et et et et es e e s et et enee st ssenseneeneeseasenseennean 95
BL5 LAMY/IMPLL....eeee ettt ettt ettt ettt ettt s et et et e s s et et et e ae et et et et e aeenteenteenteeneas 96

© 2009 Allinea Software 3

Distributed Debugging Tool v2.4

BB MPICH D4 ...ttt ettt ettt ettt ettt ettt st ettt b e e s b e s be e beesmeesreene 96
B.7 MPICH P4 INDPA ..ocviiiiieeieeieeteeteeteeeste st et e st e s e e s e e se e seesseesssesssesseesssassesssasseesessssssssnssessanssens 96
B8 MPICH-GM ...ttt ettt ettt ettt ettt e e st e st et et e b e sb et et enesae st et enteneesessentensean 96
B.9 MPICH SHMEM ...ttt sttt ettt et et ettt ettt sttt s b be st et e ene s 97
BULO IBM PE.....eeete ettt et ettt ettt et ettt ettt b et e b et e st e bt e b et e s bt e saaesates 97
Bi11 MVAPICH. ...ttt ettt ettt ettt ettt ettt b et et e st et s bt e st et e st ebenaentenseen 97
BL12 NEC MPL.cieeeete ettt et ettt sttt ettt st et be sttt sb et et e e sme e smeesmaesmees 97
B.13 OPENIMPLL......ciiieeeeeeeeeeete ettt sttt s e s ste e s bt e st e s et e e s be e e ae e s ra e s st e eestaaeseeennnraaeeeeennnnrees 97
B.14 QUAAIICS MPL......ooeiiieieeeeeeeee ettt ce e et e st e s seaae e e e essteeeeessaessensanessensesesesansesnsrenesans 98
BL15 SCOTO.....oeeeeeeee ettt ettt ettt e b et b e e bbbt e be e s me e e s reeeseanas 98
2 70 I a2 [OO 99
B2 SGIAIIX oottt ettt ettt st et ettt sbe st e e st b et et e st e b b et et e st e b et et et entsbensensenten 99
B.3 SUN CIUSLEITOOIS. ..c.ueruieteririteieiestestetesteetete e ste st ete e e ste st etessessesseessassesasentessassnsaessassnseesssnesnns 99
B4 Cray XT ..ottt ettt ettt et be e bt e s bt e bt e bt e be e s bt e bt e s bt e s bt e s st essee st esseeesnreeesnsens 99
C Compiler Notes and KNOWI ISSUES........c.cccuiiriiiriircieieesieesieesieesiessieestesssesssessseessesssesssesssasssesssesssseaesas 101
ol ADSOT ettt sttt ettt e ae bt e e e e at e st e eateeatesateeat 101
.2 GNU ettt ettt et et h bbb e e st s bt et et e bt s b e st et et e st e be st et et ebe et ebennes 101
C.3IBM XLC/XLE ..ottt esteste et est ettt s st st et et et e s bt et e st e st s be st et et ebesbenae e esesbesaseeaee 101
C.4 INLE] COMIPILETS. .c.ueeureiireirieientistetertesieet et e ste st et e tesbe st et esbesbesueessessesseentensessesssensessessassnsaesseesns 102
C.5 Pathscale EKO COMPILETS......ccccueiiieieeiieteetesteseeseestesee st e s eessees e esssesseesssesseesssessaessessseessesnsens 102
C.6 Portland Group COMPILETSc.cecueerieerieerieeieeieerieerieeteestesstesteeseessessaesssasssesssasssesassssessssssessanes 103
C.7 Sun Forte Compilers and Solaris DBXccccciievieriireeeereeneneseesseseseesessessessesssessessessssssessess 104
A Platform Notes and KNOWN ISSUES........ce.eeuerieriririniirteitetniesiestetet sttt et see sttt sae st e n 105
A1 GINU/LINUX SYSTOITIS...ccouteeuierierientententestestesiseseeseessaessaessessseessesssasssesssesssessseesssessasssassssssaessns 105
A2 IBM ALX SYSTEIIIS .cuvvirureruierrereertentesstesstesstestessessesssesssesssesssesssesssesssesssesssesssesssesssesssesssesssesens 105
A.3 AMD Opteron and INte]l EMBATccceeieeciieieiieeteeteeteeteeteete e e s tesaesaeeae s nsaeessssaeesnnsneens 105
A4 TNLE] TEANTUIML ..ttt ettt ettt b sttt s bt et et e b e sbe et e s e e e e aeeesaneas 106
A.5 Intel Xeon/Pentitm 32 Dit.....cccoeeierieieenerieieeeeetete ettt sttt ettt ettt n 106
ALB SUN SPARC ...ttt ettt ettt ettt st b ettt s b e bt et eae et et e s bt e b ens 106
ALT7 BIUE GEIB......oueniieietetetete ettt ettt ettt ettt b e ettt b et et et s bt e b et et e b s e et et e st bt e beebeeas 106
A.8 Cell Broadband ENGINE.........ccccceruiririienieririerieneneestesiessesieestestessestestessessesssessessessessessesssssessnees 107
ALGINEC SXB...neeieieieeietetetetestete et te st et et st et et et et sse st et et eseesessensentesessensantensesessesansensesessensesnsenns 107
B General Troubleshooting and KNOWI ISSUES.........cccccuerierienienienieeeeeeeeeeseeseeseeseeeseeesseesseesssnnnee s 108
B.1 General TroubleShOOtiNg.........cccccveviirieeeiiriieisteceseeee et ste e e e e se s e s e e sessesrassaassessessnens 108
B.1.1 Problems Starting the DDT GUIL.......cccevuevirriininieieniineeeerieseseseesseseseeseessseessseessssesssees 108
B.1.1 Problems Starting Scalar PrOZIams..........ccevvercerrieriererreenieniesessteniessesesseessesessesssseesssessses 108
B.1.1 Problems Starting Multi-Process PrOGIAIMS..........cocevueruereerinreneenteenenseneeneeenienseseesesessessenees 108
B.2 Starting @ PrOGIaIL......cc.cooiiiiirienieeieneerteeteste sttt st see s e st e st e sate st e s st e saeesaeesaeesmeesmeessans 109
B.2.1 DDT says it can't find your hosts or the executable............cccoevireeveneereneeceseeeecee e, 109
B.2.2 The progress bar doesn't move and DDT "times OULt'.........cccccevrererreerienesreereerieseseesreseennens 109
B.2.3 The progress bar gets close to half the processes connecting and then stops and DDT 'times
OUL ..ttt ettt et et e b et et et e bt et e b e st e bt e b et et eat e st e b et et eat e st s b et et eat e st b et ente st e b e b et et en e e bt e bt e bt e bt ebeens 110
B.2.4 Program doesn't start, and you can see a console error stating "QServerSocket: failed to
bind or listen t0 the SOCKEL........ oottt ettt e e e e 110
B.2.5 DDT complains about being unable to execute malloC..........ccceceevveevieecieeecieeeecieeeecieee e 110

B.2.6 ‘The mpi execution environment exited with an error, details follow: Error code: 1 Error

Messages: “mprun:mpmd_assemble_rsrcs: Not enough resources available”’ error when trying to
SEATT DIDT ..ttt ettt st et be st ettt ae s bt ae st et eaesneeaeesanee s 110
B3 AtACKINIE. .. eiteeiiiieieieeeete ettt sttt ettt et et s he et et a e s et e e s s e e s ateesabeesabaean 110
B.3.1 Running processes don't show up in the attach window.........c..cceceeveriiriininininnenieneiennee. 110
B4 SOUINCE VIBWET.....oiiiiiiiiieeieeieet ettt ettt ettt e st e s e s esseesmeessee s st e sseessmmanessaseneesan 111
B.4.1 No variables or line number information............cccceceeerirtennineneerecrese et 111
B.4.2 Source code does not appear when you start DDT..........cccceceverenrenrrenieniensieesieessreeesveesnnns 111
B.5 INDUL/OULPUL. ..ottt ettt et st te et st ste st et ebeste st et e b s besbetentesesbebensesabesnsesnseensesasenas 111
B.5.1 Output to stdetr iS NOt diSPlaYed.........cccveveeriririierieniirtrterieseetetere ettt see s e s eaee s 111
B.6 Controlling @ PTOGIamM.......co.cevtiiieririeteiertetetestest ettt sttt et sttt eat et e sbesbe st e st s 111
B.6.1 Program hangs when you USe Step OUL..........ccceecierierreeneeseeseeseeseeseeseeesseesseesseesssnseessnns 111

© 2009 Allinea Software 4

Distributed Debugging Tool v2.4

B.6.2 Program jumps forwards and backwards when stepping through it.........ccccecevverecieniennnne. 111
B.6.3 DDT sometimes stop responding when using the Step Threads Together option.............. 111
B.7 Evaluating Variables..........cccciiviiiiiiieieeeeceseesieesteeseesvessveesteesveesveesvessseesseesseessnessnseassnssenenan 112
B.7.1 Some variables cannot be viewed when the program is at the start of a function............... 112
B.7.2 Incorrect values printed for FOTtran array.......c.cccccecereereereerienesreeseesesessesseessesesseessessesessees 112
B.7.3 Evaluating an array of derived types, containing multiple-dimension arrays..................... 112
B.8 Memory DeDUGZING.......cccoiviriiieiinieteieestetete sttt sttt sa st ste b saaete s saesbaesasaesnsaens 112
B.8.1 The View Pointer Details window says a pointer is valid but doesn't show you which line of
€ode it Was allOCAtEA O.....ccueruiriiiiieeie ettt sttt ettt sb e st e s e e n 112
B.8.2 “Dmalloc library has gone reCUrSivVe” ITOT.........cccueveerverreeereeriesesessessessessesssessessesesssensens 112
B.8.3 “mprotect fails” error when using memory debugging with guard pages.........ccccecverrueennee. 112
B.8.4 Allocations made before or during MPI_Init show up in Current Memory Usage but have
N0 associated StaCk DACK (TACE.........cceririiieierirteteeet ettt ettt s s e s ba e s e s sateesaee s 113
B.9 MESSAZE (QUELES.....cueeeiieiieiieieeiteeteeeteeste et et e bt e bt e s bt e bt esbe e bt esseesseesseeseesseeaseeseesseesseeesansaeesans 113
B.9.1 When viewing messages queues after attaching to a process you get a “Cannot find
Message QUEUE DLL” EITOT......cccutirierrriteeiiteniiterstereteeereessreessitesseessseesseessseessseesssessssesssseessseees 113
B.9.1 When trying to view my Message Queues using mpich you get no output but also see no
BITOTS c.eeiuteiureeteiteire et sresa e s b s b e s b e e b e e b e s b e e ab e sab e sabesabesab e sabesabesabesaseeabeesbessbesabeesbesabesabessnessnesnnesnnnnes 113
B.10 MISCEIIANEOUS.....c..cveueeuerierieieteieitstestetetere sttt e bt ee e e s bt et et s st sae st eae e e st sbesseeeneenseesneeas 113
B.10.1 Some features seem to be missing (e.g. The Fortran Module Browser)...........ccceeveuve... 113
B.10.2 Application WOTKING diT@CLOTY......ccceveereereierieeieeeeeeeseeseeseesreesseesreesseesseesssesseessessseesennes 113
B.10.3 “One of the debuggers DDT is communicating with has terminated unexpectedly” error
... 113
B.11 ODtaiNing SUPPOTL....cceeceriirierireisierieseetetesteseetestessesseesessessesssessessessesssessessessasssessssessssessssaes 114
€ INAEX ettt ettt ettt et ettt ettt st et et e e bt b et e st e b e b et et et e b e s b et et e at e bt s bt e e at e satesaeeeateeanes 115

© 2009 Allinea Software 5

Distributed Debugging Tool v2.4

1 Introduction

The Distributed Debugging Tool (DDT) is an intuitive, scalable, graphical debugger. This document
introduces DDT and explains how to use it to its full potential. If you just wish to get started with
DDT, you will find that the examples directory of your DDT installation contains a quick-start
example.

DDT can be used as a single-process or a multi-process program (MPI) debugger. The availability of
these capabilities will depend on the licence that you have - although multi-process licences are
always capable of supporting single-process debugging.

Both modes of DDT are capable of debugging multiple threads, including OpenMP codes. DDT
provides all the standard debugging features (stack trace, breakpoints, watches, view variables, threads
etc.) for every thread running as part of your program, or for every process - even if these processes
are distributed across a cluster using an MPI implementation.

DDT can do many tasks beyond the normal capabilities of a debugger — for example the memory
debugging feature detects some errors before they have caused a program crash by verifying usage of
the system allocator, and the message queue integration with MPI can show the current state of
communication between processes in the system.

Multi-process DDT encourages the construction of user-defined groups to manage and apply
debugging actions to multiple processes. Once you are comfortable working with groups of processes,
everything eAtlse becomes simple and intuitive. If you have used a visual debugger before you will
find DDT's interface familiar. Using DDT to debug MPI code makes debugging parallel code as easy
as debugging serial code.

C, C++, Fortran and Fortran 90/95/2003 are all supported by DDT, along with a large number of
platforms, compilers and all known MPI libraries.

© 2009 Allinea Software 6

Distributed Debugging Tool v2.4

2 Installation and Configuration

This section describes the first steps necessary before you can begin to debug with DDT.
We begin by describing how to install the software, and then how to configure it.
The steps are simple and short — an ordinary — or root — user can do this.

Configuration can be done by any user for their personal settings, or by a root user who wishes to set
the configuration for an entire site (see section 2.2.1 Site Wide Configuration). DDT's configuration
wizard should explain things clearly enough to render reading all of this section unnecessary, if you
just wish to get started quickly and if your system is relatively straightforward.

2.1 Installation

DDT may be downloaded from the Allinea website www.allinea.com. Follow the instructions below
to install DDT.

2.1.1 Graphical Install
Untar the package and run the installer executable using the commands below.

gunzip < ddt2.4-ARCH.tar | tar xvf -
./installer

The installer consists of a number of pages where you can choose install options. Use the Next and
Back buttons to move between pages or Cancel to cancel the installation.

The Install Type page lets you choose who you want to install DDT for. If you are an administrator
(root) you may install DDT for All Users in a common directory such as /opt or /usr/local,
otherwise only the Just For Me option is enabled.

DDT Installer

Install Type

Who do you want to install DDT for?
i Just For Me

i All Users

Next > Cancel

Help |

Fig 1: DDT Installer - Installation type

© 2009 Allinea Software

http://www.allinea.com/
http://www.allinea.com/
http://www.allinea.com/

Distributed Debugging Tool v2.4

Once you have selected the installation type, you will be asked what directory you would like to install
DDT in. If you are installing DDT on a cluster, make sure you choose a directory that is shared
between the cluster frontend and the cluster nodes. Otherwise you must install or copy it to the same

location on each node.

DDT Installer

Destination

Install DDT to:
foptfallinea/ddt ﬁl

This directory must be accessible on all the nodes in your cluster.

Help | < Back | Next > I Cancel

Fig 2: DDT Installer - Installation directory

You will be shown the progress of the installation on the Install page.

DDT Installer

Install

Extracting "bin/ddt.bin" to "/opt/allinea/ddt/bin/ddt.bin"

1%

e

Fig 3: DDT Install in progress

© 2009 Allinea Software

Distributed Debugging Tool v2.4

An icon for DDT will be added to your desktop environment's Development menu or CDE's
Application Manager.

It is important to follow the instructions in the README file that is contained in the tar file. In
particular, you will need a valid licence file — evaluation licences are available from
http://www.allinea.com .

Due to the vast number of different site configurations and MPI distributions that are supported by
DDT, it is inevitable that sometimes you may need to take further steps to get DDT working. For
example, it may be necessary to ensure that environment variables are propagated to remote nodes,
and that DDT's libraries and executables are available on the remote nodes.

2.1.2 Text-mode Install
The text-mode install script textinstall. sh is useful if you are installing DDT remotely.

gunzip < ddt2.4-ARCH.tar | tar xvf -
./textinstall.sh

Press Enter to read the licence when prompted and then enter the directory where you would like to
install DDT. The directory must be accessible on all the nodes in your cluster.

2.1.3 Licence Files

Licence files should be stored as {installation-directory}/Licence, (e.g.
/home/bob/ddt).

If this is inconvenient, the user can specify the location of a licence file using an environment variable,
DDT_LICENCE_FILE. For example:

export DDT_LICENCE_ FILE=$HOME/SomeOtherLicence

The user also has the choice of using DDT_LICENSE_FILE as the environment variable (American
spelling).

The order of precedence when searching for licence files is:

® 3$DDT_LICENCE_FILE
® 3$DDT_LICENSE_FILE
® {installation-directory}/Licence

If you do not have a licence file, the DDT GUI will not start. A warning message will be presented.
For remote MPI processes, you will also require the licence to be installed on the nodes. If this licence
is not present, the remote nodes will be unable to connect to the GUI.

Time-limited evaluation licences are available from the Allinea website, www.allinea.com.

2.1.1 Floating Licences

For users with floating licences, the licensing daemon must be started prior to running DDT. It is
recommended that this is done as a non-root user — such as nobody or a special unprivileged user
created for this purpose.

{installation-directory}/bin/licenceserver &

This will start the daemon, it will serve all floating licences in the current working directory that match
Licence* or License*.

© 2009 Allinea Software 9

http://www.allinea.com/
http://www.allinea.com/
http://www.allinea.com/
http://www.allinea.com/
http://www.allinea.com/
http://www.allinea.com/

Distributed Debugging Tool v2.4
The host name, port and MAC (network) address of the licence server will be agreed with you before
issuing the licence, and you should ensure that the agreed host and port will be accessible by users.
DDT clients will use a separate client licence file which identifies the host, port, and licence number.
Log files can be generated for accounting purposes.

For more information on the Licence Server please see section 7 of this document.

2.2 Configuration

DDT has a Configuration Wizard to help simplify setting up DDT and choosing the correct options to
start your programs. The first time you run DDT after installing it you may see this window:

DDT - No Configuration File

DOT cannot open the configuration file:

/home/user/.ddt/config.ddt

Create a new file] Browse for another file] Exit

Fig 4. Configuration File Finder

The Configuration Wizard helps you set DDT up to debug programs on your system, whether it is an
individual workstation or a four thousand node super-cluster! Most settings will be automatically
detected for you, so unless your system administrator has provided a configuration file for you to use,
click on Create a New File and follow the simple instructions.

Note: this configuration wizard does not help you to set up DDT to submit jobs through a queue.
Extensive documentation on the topic can be found in section 2.3 of this user guide.

The first page of the configuration wizard welcomes you to the wizard and explains the process. Click
on Next to start the process, or Cancel if you have changed your mind and would prefer to browse for
a configuration file. It's both quick and easy to use the Configuration Wizard, so we recommend
clicking on Next. If you're in a hurry, stop reading this and just click on every Next until the wizard
finishes! It'll probably do the right thing and you can always come back here through the

Session — Configuration Wizard menu item if things don't work out.

After the welcome page, you will either see the MPI Configuration page or the Attach List page. Only

users with parallel DDT licences will see the MPI Configuration page. If you don't see this page, you
can obtain a trial MPI licence from our website, www.allinea.com to see what you're missing.

© 2009 Allinea Software 10

http://www.allinea.com/
http://www.allinea.com/
http://www.allinea.com/

Distributed Debugging Tool v2.4

The page itself looks like this:

DDT Configuration Wizard

MPI Implementation
Please select your MPI implementation from the box below (or
select "Mone” if you do not wish to use MPI with DOT.
d d t‘ If you do not know which MPI implementation you are using select
the "Generic" option, which should work for most implementations.
mpich 1 standard hd
E§ glﬂEE
BOALE TO MEW HEIDHTZ
Hep | cBack | [Next> || | cancel

Fig 5: Configuration Wizard MPI Selection

As you can see, there's a detailed description that we won't repeat here. Instead it's worth saying that if
the selection box simply says Click to select... then DDT was not able to determine which MPI
implementation was installed on your system. If you don't know yourself, your system administrator
should be able to help you choose one of the options.

If you do know which MPI you have, and you're sure DDT has picked the wrong one, then go ahead

and change it, but please contact support@allinea.com so that we can improve this feature in future
releases!

© 2009 Allinea Software 11

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

Once you have chosen or accepted an MPI Implementation, click on Next to configure DDT for
attaching, using the page shown below:

Note: some MPI implementations (e.g. OpenMPI) do not require the settings on this page so DDT will skip it.

DDT Configuration Wizard

Compute nodes used for attaching

Please enter your compute nodes below (or browse for an exiting
file). This allows DOT to attach to processes on remote machines.

d d t, Nodes File: /home/user.ddt/nodes =

The File musl conlain exaclly one hosiname on each line and nolhing eles.
I you do noi wish 1o allach 1o remole processes. enier”lbcalhosl" in the box below.

Nodes:

localhost

a%lnaa

BOALE T MEW HEIDHTS

Ses Example

Hep | <Back | [Next> || | cancel

Fig 6: Configuration Wizard Attach List

DDT is capable of finding and attaching to processes on remote systems, including parallel jobs
running on your cluster if you have one. To do this, it needs to know which machines you want it to
look on. This takes the form of a list of host names, one on each line, like this:

compO00
comp01
comp02
comp03

Or perhaps like this:
localhost
apple.mylab.com

pear .mylab.com
super.mylab.com

If you only use DDT on your own machine, you would create a file like this:

localhost

© 2009 Allinea Software 12

Distributed Debugging Tool v2.4

Hopefully your system administrator has a file like this for you and you can click on the browse (=

button next to Nodes File. If not, you can click on the browse = button next to create a new file,
choose a filename and then enter a list like the ones above into the big white box called Nodes:.

When you're satisfied, click on Next. DDT will now try to find a way to reach these machines without
needing you to type in a password.

Important: If DDT is running in the background (e.g. ddt &) then this process may get stuck (some
SSH versions cause this behaviour when asking for a password). If this happens to you, go to the
terminal and use the g or similar command to make DDT a foreground process, or run DDT again,
without using &.

If DDT finds a suitable command, it will show a summary screen that tells you that you've finished
and can now use DDT! If it fails, then DDT will explain what went wrong and how to correct it with a
long explanation that looks something like this:

DDT Configuration Wizard

Remote execution mechanism failed

To display and attach to running jobs DDT logs into the compute

nodes. To do this, it runs a script called ~/ . ddt/remote-exec
d d t‘ and passes it the hostname, program name and program

arguments in that order. This remote-exec script is not working
properly on the nodes you chose on the previous page.

DOT has tried to generate one of these for you using rsh-based
ssh-based or local-only scripts without success. You can test this

=] g % lr-‘ =23 foryourself at the command line by typing

BOALE TO MEW HEIGHTS ~/.ddt/remote-exec <a compute node> hostname

The most commeon reason for failure is a password prompt being
displayed. To configure your system to allow this please consult
your rsh/ssh documentation or ask your system administrator.

When the system is configured correctly, running the above
command will print the name of the compute node at the command
line and return immediately.

You may continue with this wizard, but DDT will not be able to
search for or attach to running jobs until this script file is working
as described above. Once the script is working you will be able to
attach immediately and do not need to run this wizard again.

Help < Back]] Cancel

Fig 7: Remote Execution Error Message

If you see this page, read it, understand it, try to perform the corrections it suggests. You may find
section 3.2 Attaching To Running Programs of this user guide helpful. Our support staff will be happy
to assist you, drop them a mail at support@allinea.com. We all want you to see the page that comes
after that, the Congratulations page.

© 2009 Allinea Software 13

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

DDT Configuration Wizard

Congratulations

You can now start debugging your codes with DDT!

d d t‘ If your jobs are submitted through a gueue, you can configure this

by selecting "Session’ then 'Options’ in the menu when DDT starts.
Please see the userguide for more information about configuring
DDT to use a queue.

Click on 'Finish' to complete the wizard and save these settings to:

= g § l nes fhome/user/.ddt/config.d] ‘E]

BOALE TO MEW HEIGHTS

~ Add an icon for DDT to the applications menu

Help < Back Finish Cancel

Fig 8: Configuration Wizard Complete

If you decided not to configure attaching, or if the remote-exec part failed then there will be a small
red warning that you will not be able to attach to running programs, but all other features will be
available. Note: this may also prevent the MPICH Standard startup method, and Remote launch
feature from working.

Click on Finish to save these settings to the configuration file you selected, or Cancel if you've
changed your mind.

As stated before, this configuration wizard does not help you to set up DDT to submit jobs through a
queue. If you are using a queuing system such as PBS on your cluster then you can find extensive
documentation on setting DDT up to use these for debugging elsewhere in this user guide.

2.2.1 Site Wide Configuration

If you are the system administrator, or have write-access to the installation directory, you can provide
a DDT configuration file which other users will be given a copy of — automatically — the first time that
they start DDT.

This can save other users from the configuration process — which can be quite involved if site-specific
configuration such as queue templates and job submission have to be crafted for your location.

To provide a configuration file for this purpose, set the DDTCONFIG environment variable to {ddt -
installation-path}/config.ddt and launch DDT. Make the appropriate settings for your
configuration and then quit DDT. Unset the DDTCONFIG environment variable. DDT will have
saved the configuration file in the file specified, and this will be picked automatically for all future
first-time users.

© 2009 Allinea Software 14

Distributed Debugging Tool v2.4

2.3 Advanced Configuration - Integrating DDT With Queuing
Systems

DDT can be configured to work with most job submission systems. In the DDT Options window, you
should choose Submit job through queue . This displays extra options and switches DDT into queue
submission mode.

The basic stages in configuring DDT to work with a queue are:

1. Making a template script, and
2. Setting the commands that DDT will use to submit, cancel, and list queue jobs.

Your system administrator may wish to provide a DDT config file containing the correct settings,
removing the need for individual users to configure their own settings and scripts.

In this mode, DDT uses a template script to interact with your queue system. The templates
subdirectory contains some example scripts that can be modified to meet your needs.
{installation-directory}/templates/sample.qtf, demonstrates the process of
creating a template file in some detail.

2.3.1 The Template Script

The template script is based on the file you would normally use to submit your job - typically a shell
script that specifies the resources needed such as number of processes, output files, and executes
mpirun, vmirun, poe or similar with your application. The most important difference is that job-
specific variables, such as number of processes, number of nodes and program arguments, are replaced
by capitalized keyword tags, such as NUM_PROCS_TAG. When DDT prepares your job, it replaces
each of these keywords with its value and then submits the new file to your queue.

Each of the tags that will be replaced is listed in the following table — and an example of the text that
will be generated when DDT submits your job is given for each.

Tag Purpose After Submission Example
PROGRAM_TAG Target path and filename /users/ned/a.out
PROGRAM_ARGUMENTS_TAG Arguments to target program -myarg myval
NUM_PROCS_TAG Total number of processes 16
NUM_PROCS_PLUS_ONE_TAG |Total number of processes + 1 17
NUM_NODES_TAG Number of compute nodes 8
NUM_NODES_PLUS_ONE_TAG |Number of compute nodes + 1 9
PROCS_PER_NODE_TAG Processes per node 2
PROCS_PER_NODE_PLUS_ONE | Processes per node + 1 3
_TAG
NUM_THREADS_TAG Number of OpenMP threads per 4
node
EXTRA_MPI_ARGUMENTS_TAG |Extra mpirun arguments specified |-partition DEBUG
in the Run window
WORKING_DIRECTORY_TAG The working directory DDT was | /users/ned
launched in
INPUT_FILE_TAG The Input File specified in the Run | /users/ned/input.dat
window
DDTPATH_TAG The path to the DDT installation | /opt/allinea/ddt

© 2009 Allinea Software 15

Distributed Debugging Tool v2.4

Additionally, any environment variables in the GUI environment ending in “_TAG” are replaced
throughout the script by the value of those variables.

2.3.2 OpenMPI, Altix, Blue GenelP and Cray MPT

Ordinarily, your queue script will probably end in a line that starts MPTRUN with your target
executable. You should prefix this line with DDTPATH_TAG/bin/ddt-client. For example, if
your script currently has the line:

mpirun -np 16 program_name myargl myarg2
You would write:

DDTPATH_TAG/bin/ddt-client mpirun -np 16 program_name myargl myarg2

For a template script you use tags in place of the program name, arguments etc. so they can be
specified in the DDT GUI rather than editing the queue script each time:

DDTPATH_TAG/bin/ddt-client DDT_DEBUGGER_ARGUMENTS_TAG mpirun -np
NUM_PROCS_TAG EXTRA_MPI_ARGUMENTS_TAG PROGRAM_TAG PROGRAM_ARGUMENTS_TAG

2.3.3 Other MPIs

Ordinarily, your queue script will probably end in a line that starts MPTRUN with your target
executable. Your program name should be replaced in this line by DDTPATH_TAG/bin/ddt -
debugger. For example, if your script currently has the line:

mpirun -np 16 program_name myargl myarg2
You would write:

mpirun -np 16 DDTPATH_TAG/bin/ddt-debugger myargl myarg2

For a template script you use tags in place of the program name, arguments etc. so they can be
specified in the DDT GUI rather than editing the queue script each time:

mpirun -np NUM_PROCS_TAG EXTRA_MPI_ARGUMENTS_TAG DDTPATH_TAG/bin/ddt-
debugger DDT_DEBUGGER_ARGUMENTS_TAG PROGRAM_ARGUMENTS_TAG

Note: don't include PROGRAM_TAG — ddt -debugger will launch your program for you.

2.3.4 Scalar Programs

To make your template script work for scalar programs you can add something similar to the
following:

if [$NUM_PROCS_TAG = 1]; then

DDTPATH_TAG/bin/ddt-client DDT_DEBUGGER_ARGUMENTS_TAG PROGRAM_TAG
PROGRAM_ARGUMENTS_TAG
else

mpirun -np NUM_PROCS_TAG EXTRA_MPI_ARGUMENTS_TAG
DDTPATH_TAG/bin/ddt-debugger DDT_DEBUGGER_ARGUMENTS_TAG
PROGRAM_ARGUMENTS_TAG
fi

2.3.5 Defining New Tags

As well as the pre-defined tags listed in the table above you can also define new tags in your template
script whose values can be specified in the DDT GUI.

Tag definitions have the following format:

© 2009 Allinea Software 16

Distributed Debugging Tool v2.4

EXAMPLE_TAG: { keyl=valuel, key2=value2, ... }
Where key1, key2, ... are attribute names and valuel, value2, ... are the corresponding values.

The tag will be replaced wherever it occurs with the value specified in the DDT GUI, for example:

#PBS -option EXAMPLE_TAG

The following attributes are supported:

Attribute Purpose Example

type text: general text input type=text
select: select from two or
more options

check: a boolean option

label The label for the user interface |label="Account”

widget.
default Default value for this tag default="interactive”
mask Input mask mask="09:09:09"

0: ASCII digit permitted but not

required.

9: ASCII digit required. 0-9.
N: ASCII alphanumeric
character required. A-Z, a-z, 0-
9

n: ASCII alphanumeric
character permitted but not
required.

options Options to use with the options="not_shared|
select tag type, separated by |shared”
the | character

checked Value of a check tag if checked="enabled”
checked.

unchecked Value of a check tag if unchecked="enabled”
unchecked.

Examples

JOB_TYPE_TAG: {type=select,options=parallel|serial, label="Job
Type",default=parallel}

WALL_CLOCK_LIMIT_TAG: {type=text,label="wall Clock
Limit", default="00:30:00",mask="09:09:09"}

NODE_USAGE_TAG: {type=select,options=not_shared|shared, label="Node
Usage",default=not_shared}

ACCOUNT_TAG: {type=text,label="Account",6 global}
See the template files in {installation-directory}/templates for more examples.

To specify values for these tags click the Edit Template Variables button on the Job Submission
Options page (see Fig 10 below) or the Run window. You will see a window similar to the one below:

© 2009 Allinea Software 17

Distributed Debugging Tool v2.4

Queue Submission Parameters

Job Type:
Wall Clock Limit:
Node Usage:

Account:

parallel
00:30:00
not_shared

userrizi

OK Cancel

Fig 9: Template Variables Window

The values you specify are substituted for the corresponding tags in the template file when you run a

job.

2.3.6 Configuring Queue Commands

Once you have selected a queue template file, enter submit, display and cancel commands.

When you start the debug session DDT will generate a submission file and append its filename to the

submit command you give.

For example, if you normally submit a job by typing job_submit -u myusername -f
myfile then in DDT you should enter job_submit -u myusername -f as the submit

command.

© 2009 Allinea Software

18

Distributed Debugging Tool v2.4

DDT - Options

~

System

Job Submission Settings

' Job Submission| ~ Submit job through queue or configure own "mpirun” command

=

@ Remote Launch

Appearance Regexp for job id: jobis(.+)s\(

Submission template file: Ioptfallinea.-fddmemplatesfsge_score.qtﬂ |

Submit command: gsub

Cancel command: gdel JOB_ID_TAG

Display command: gstat
Template Uses
® NUM_PROCS _TAG
4 NUM_MNODES_TAG and PROCS_PER_NODE_TAG

PROCS_PER NODE_TAG: |1 S

Edit Queus Submission Parameters...]

Also submit scalar jobs through the queue

OK Cancel

Fig 10: Queuing Systems

To cancel a job, DDT will use a regular expression you provide to get a value for JOB_ID_TAG. This
tag is found by using regular expression matching on the output from your submit command.

This is substituted into the cancel command and executed to remove your job from the queue. The
first bracketed expression in the regexp is used in the cancel command. The elements listed in the
table are in addition to the conventional quantifiers, range and exclusion operators.

Element Matches

C A character represents itself

\t A tab

. Any character

\d Any digit

\D Any non-digit

\s Whitespace

\S Non-whitespace

\w Letters or numbers (a word character)
\W Non-word character

For example, your submit program might return the output job id j1128 has been
submitted - one regular expression for getting at the job id is 1d\s(.+)\shas. If you would
normally remove the job from the queue by typing job_remove j1128 then you should enter
job_remove JOB_ID_TAG as DDT's cancel command.

Some queue systems allow you to specify the number of processes, others require you to select the
number of nodes and the number of processes per node. DDT caters for both of these but it is
important to know whether your template file and queue system expect to be told the number of
processes (NUM_PROCS_TAG) or the number of nodes and processes per node (NUM_NODES_TAG
and PROCS_PER_NODE_TAG). If these terms seem strange, see sample.qtf for an explanation of
DDT's queue template system.

© 2009 Allinea Software 19

Distributed Debugging Tool v2.4

Please note that on some rare platforms an extra environment variable may be needed whilst working
with some queue systems: DDT_IGNORE_MPI_OUTPUT may need to be set to 1 prior to starting
DDT.

2.4 Optional Configuration

In addition to the configuration wizard, DDT also provides an options dialog, which allows you to
quickly edit the settings in the configuration wizard, as well as other non-essential preferences. These
options are outlined briefly below.

2.4.1 System
MPI Implementation: Allows you to tell DDT which MPI implementation you are using.

Note: If you are not using DDT to debug MPI programs select none.

Select Debugger: Tells DDT which underlying debugger DDT should use. This should almost always
be left as “Automatic”.

Create Root and Workers groups automatically: If this option is checked DDT will automatically
create a Root group for rank 0 and a Workers group for ranks 1...N when you start a new MPI session.

Default groups file: Entering a file here allows you to customise the groups displayed by DDT when
starting an MPI job. If you do not specify a file DDT will create the default “Root” and “Workers”
groups if the previous option is checked.

Note: A groups file can be created by right clicking the process groups panel and selecting “Save groups...”
while running your program.

Attach hosts file: When attaching, DDT will fetch a list of processes for each of the hosts listed in this
file. This option can also be configured using the configuration wizard.

2.4.2 Job Submission

This section allows you to configure DDT to use a custom “mpirun” command, or submit your jobs to
a queuing system. For more information on this, see section 2.3 of this user guide.

2.4.3 Remote Launch

This section allows you to configure DDT to launch scalar programs, or your mpirun command on a
remote system. If this option is enabled, DDT will launch your scalar jobs on the specified remote
system, rather than the local machine.

Configuring remote launch is not necessary if your “mpirun” command is run on the local machine
(even if it launches remote processes itself).

Hostname: Hostname or IP address of the remote system to launch on.
Path to ddt-debugger: The full path to the ddt-debugger binary on the remote system. This

Once you have entered your Remote Launch settings, you can click the “Test Remote Launch” button
to test your configuration.

Note: This feature requires that attaching is properly configured in DDT, and that your home directory is
accessible by both the remote and local machines.

2.4.4 Fonts & Editor

This section allows you to configure the code viewer, which displays you source code while you are
debugging your program.

© 2009 Allinea Software 20

Distributed Debugging Tool v2.4
Tab size: Sets the width of a tab character in the source code display. (A width of 4 means that a tab
character will have the same width as 4 space characters.)

Font name: The name of the font used to display your source code. It is recommended that you use a
fixed width font.

Font size: The size of the font used to display your source code.

Editor: This is the program DDT will execute if you right click the code viewer and choose “Open
file in editor”. This command should launch a graphical editor. The default value for is xdg-open,
which attempts to open the default editor for your system.

Override System Font Settings: This setting can be used to change the font size of all components in
DDT (except the Code Viewer).

2.5 Getting Help

In the event of difficulties - in either installing or using DDT - please consult the appendices to this
document or the support and software updates section of our website. This user guide is also available
from within DDT by pressing F1.

Support is also available from the support team — they may be contacted at support@allinea.com — and
will be eager to help.

© 2009 Allinea Software 21

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

3 Starting DDT

As always, when compiling the program that you wish to debug, you must add the debug flag to your
compile command. For the most compilers this is -g. It is also advisable to turn off compiler
optimisations as these can make debugging appear strange and unpredictable. If your program is
already compiled without debug information you will need to remake the files that you are interested
in again.

To start DDT simply type one of the following into a shell window:
ddt
ddt program_name
ddt program_name arguments

Note: You should not attempt to pipe input directly to DDT — for information about how to achieve the effect of
sending input to your program, please read the section about program input in this userguide.

Once DDT has started it will display the Welcome Screen.

DDT - Welcome

Welcome to DDT
What would you like to do?

| Bun and Debug a Program |]
d d t’ Debug a Multi-Process Mon-MPI Pro-gram]
| Attach to a Running Program]
Open a Core File]

allinea
R —— Restore a Checkpoint]
... ‘ —]

Fig 11: Welcome Screen

The Welcome Screen allows you to choose what kind of debugging you want to do. You can:

i) run a program from DDT and debug it
ii) debug a program you launch manually (e.g. on the command line)
iii) attach to an already running program
OR
iv) open a core file generated by a program that crashed.

© 2009 Allinea Software 22

Distributed Debugging Tool v2.4

3.1 Running a Program

DDT - Run

Application: /opt/allinea/ddt/examples/a.out EJ
Arguments:

Run Without MPI Support

Options: OpenMPI, no queue | Change...

Number of processes 16 g Number of threads (QpenMP only): Off =4

k|
Advanced ==

Bun J Cancel J

Fig 12: Run window

If you click the Run button on the Welcome Screen you will see the window above.

If you only have a single process licence or have selected none as your MPI Implementation the view
will be more compact than shown above. The MPI options are not available when DDT is in single
process mode. If you have a multiple process licence you can restore the full view by clicking the
Change... button and selecting a different MPI implementation. See section 3.3 Debugging Single-
Process Programs for more details about using DDT with a single process.

In the application box, enter the full pathname to your application. If you specified one on the
command-line, this will already be filled in. You may alternatively select an application by clicking

on the browse '= button.

Note: Many MPIs have problems working with directory and program names containing spaces. We
recommend avoiding the use of spaces in directory and file name for now.

The next box is for arguments. These are the arguments passed to your application, and will be
automatically filled if you entered some on the command-line. Avoid using special characters such as'
and “, as these may be interpreted differently by DDT and your command shell. If you must use these
and cannot get them to work as expected, please contact support@allinea.com.

The choice of MPI implementation is critical to correctly starting DDT. Your system will normally
use one particular MPI implementation. If you are unsure as to which to pick, try generic, consult
your system administrator or Allinea. A list of settings for common implementations is provided in
Appendix B MPI Distribution Notes and Known Issues.

Finally you should enter the number of processes that you wish to run. DDT supports over 1000
processes but this is limited by your licence.

If you wish to set more options, such as program and MPI arguments, memory debugging and so on,
click the Advanced button. The window will expand, and look like this:

© 2009 Allinea Software 23

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

Application: /opt/allinea/ddt/examples/a.out] |

Arguments:

Run Without MPI Support

Options: OpenMPI, no queue | Change...

Number of processes 16 é} Number of threads (OpenMP only): Off ﬁ

<< Advanced

Blugins: [T intel Message Checker 7.1 - Enables MPI message checking when using Intel MPI 3.0 or later

MPIRun Arguments: -

Extra environment variables:
(for MPI script and application)

Pause when the program reaches exit or _exit

+ Pause when the program reaches aport or has a fatal MP| error

Input File: b
Enable Memory Debugging = Settings...

Bun] Cancel]

Fig 13: Advanced options

The MPIRun arguments box is for arguments that are passed to mpirun or your equivalent (such as
scrun on SCore, mprun on Solaris) — usually prior to your executable name in normal mpirun
usage. You can place machine file arguments — if necessary — here. For most users this box can be
left empty.

Please note that you should not enter the - np argument as DDT will do this for you.

The plugins box allows you to enable plugins for various third-party libraries, such as the Intel
Message Checker or Marmot. See the “Using and Writing Plugins for DDT” section later in this
document for more information.

The MPIRun environment should contain environment variables that should be passed to mpirun or
its equivalent: some implementations allow you to set extra variables such as
MPI_MAX_CLUSTER_SIZE=1 on MPICH. These environment variables may also be passed to
your program, depending on which MPI implementation your system uses. Most users will not need
to use this box.

If your desired MPI command is not in your PATH, or you wish to use an MPI run command that is
not your default one, you can set the environment variable DDTMPIRUN before you start DDT, to run
your desired command.

The next two checkboxes allow you to choose whether or not DDT will automatically pause your
program when it looks like it is about to finish. If your program reaches one of the functions shown,
DDT will ask you whether you want to pause the processes that have reached this point so you can see
how they got there, or to let them carry on and (usually) finish. The default setting — do nothing on a
normal exit but stop if there is an MPI error or if abort is called — is best for most users. Otherwise,
MPI might terminate your processes on certain errors and you would then be unable to discover what
had happened.

© 2009 Allinea Software 24

Distributed Debugging Tool v2.4

The memory debugging options are described in detail in the Memory Debugging section of this
document.

Select run to start your program — or submit if working through a queue (see section 2.3 Integrating
DDT With Queuing Systems). This will run your program through the debug interface you selected
and will allow your MPI implementation to determine which nodes to start which processes on.

Note: If you have a program compiled with Intel 1fort or GNU g77 you may not see your code and highlight
line when DDT starts. This is because those compilers create a pseudo MAIN function, above the top level of
your code. To fix this you can either open your Source Code window and add a breakpoint in your code — then
run to that breakpoint, or you can use the Step into function to step into your code.

When your program starts, DDT tries to work out which MPI world rank each process has. If this
fails, you will see the following error message:

& DDT couldn't find complete MPIL rank information for these processes and has assigned

an arbitrary number to each process instead. You can manually assign ranks with the
"Use as MPI rank" button inside the cross-process comparison window - check the user
guide for details. Set the environment variable DDT_IGNORE_MPI_RANK_ERRORS to 1
to avoid seeing this warning again.

Of course you can continue to debug your program. It just means that the number DDT shows on each
process will probably not be the MPI rank of the process, which can be confusing. Often there will be

a variable in your program that holds the MPI world rank. You can tell DDT to use this variable as the
rank for each process — see section 1.8 Assigning MPI Ranks for details.

To end your current debugging session select the End Session menu option from the Session menu.
This will close all processes and stop any running code. If any processes remain you may have to
clean them up manually using the kill command or a command provided with your MPI
implementation such as mpkill on Solaris.

3.2 Notes on the MPICH Standard and OpenMPI options

For most MPICH-based distributions, the MPICH Standard option should be chosen as DDT's MPI
implementation. This allows MPICH to start all the processes, and then attaches to them while they're
inside MPI_Init. To make this work, DDT must have a way to start programs on cluster nodes.
This is usually chosen as part of the attaching configuration process.

If attaching is not already set up when you run the job, DDT will try to automatically configure
attaching. You may see a small window appear while DDT searches for an appropriate command to
use (ssh and rsh are both checked, for example).

Important: If DDT is running in the background (e.g. ddt &) then this process may get stuck (some
SSH versions cause this behaviour when asking for a password). If this happens to you, go to the
terminal and use the g or similar command to make DDT a foreground process, or run DDT again,
without using &.

If DDT can't find a password-free way to access the cluster nodes then you will not be able to use the
MPICH Standard startup option. Instead, You can use generic, although startup may be slower for
large numbers of processes, or you can use the Configuration Wizard to set up attaching - see section
3.2 Attaching To Running Programs below for more information on configuring DDT manually. If
you have any problems, email support@allinea.com.

© 2009 Allinea Software 25

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

Note: The MPICH Standard startup option requires your home directory to be mounted on each of the
nodes. If this is not the case, you will have to set the environment variable DDT_HOST to the
hostname of the cluster frontend on each node, and use the Generic startup option instead. Please
contact support@allinea.com for more information and help with this configuration.

3.3 Debugging Single-Process Programs

Application: Ioptfallineafddtfexamplesfa.ouﬂ EJ

Arguments:

Options: no MPI, no queue = Change...

Number of threads (OpenMP only): Off =

=
Advanced »=

Bun J Cancel

Fig 14: Single-Process Run Window

Users with single-process licences will immediately see the Run Window that is appropriate for single-
process applications.

Users with multi-process licences can check the Run Without MPI Support checkbox to run a single
process program.

Select the application — either by typing the file name in, or selecting using the browser by clicking the
browse ‘= button. Arguments can be typed into the supplied box.

If you wish, you can also click on the Advanced button to access some of the features listed above (e.g.
Memory Debugging).

Finally click Run to start your program.

Note: If you have a program compiled with Intel 1fort or GNU g77 you may not see your code and highlight
line when DDT starts. This is because those compilers create a pseudo MAIN function, above the top level of
your code. To fix this you can either open your Source Code window and add a breakpoint in your code — then
run to that breakpoint, or you can use the Step Into function to step into your code.

To end your current debugging session select the End Session menu option from the Session menu.
This will close all processes and stop any running code. If any processes remain you may have to
clean them up manually using the kill command or a command provided with your MPI
implementation such as mpkill on Solaris.

3.4 Debugging OpenMP Programs

Starting an OpenMP program in DDT is simple — when you set the “Number of threads (OpenMP
only)” value to anything other than “off”, DDT runs your program with OMP_NUM_THREADS set
to that value.

There are several important points to keep in mind while debugging OpenMP programs:

1. Some OpenMP libraries only create the threads when the first parallel region is reached. Don't
worry if you can only see one thread at the start of the program.

© 2009 Allinea Software 26

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

2. You cannot step into a parallel region. Instead, tick the “Step threads together” box and use
the “Run to here” command to synchronise the threads at a point inside the region — these
controls are discussed in more detail in their own sections of this document.

3. You cannot step out of a parallel region. Instead, use “Run to here” to leave it. Most OpenMP
libraries work best if you keep the “Step threads together” box ticked until you have left the
parallel region. With the Intel OpenMP library, this means you will see the “Stepping
Threads” window and will have to click “Skip All” once.

4. Leave “Step threads together” off when you are outside a parallel region. Otherwise you'll
have to wait for the “Stepping Threads” window every time you step or play the main thread.

5. To control threads individually, use the “Focus on Thread” control. This allows you to step
and play one thread without affecting the rest. This is helpful when you want to work through
a locking situation or to bring a stray thread back to a common point. The Focus controls are
discussed in more detail in their own section of this document.

6. Shared OpenMP variables may appear twice in the Locals window. This is one of the many
unfortunate side-effects of the complex way OpenMP libraries interfere with your code to
produce parallelism. One copy of the variable may have a nonsense value — this is usually
easy to recognise. The correct values are shown in the Evaluate and Current Line windows.

7. Parallel regions may be displayed as a new function in the stack views. Many OpenMP
libraries implement parallel regions as automatically-generated “outline” functions, and DDT
shows you this. To view the value of variables that are not used in the parallel region, you may
need to switch to thread 0 and change the stack frame to the function you wrote, rather than
the outline function.

8. Stepping often behaves unexpectedly inside parallel regions. Reduction variables usually
require some sort of locking between threads, and may even appear to make the current line
jump back to the start of the parallel region! Don't worry about this — step over another couple
of times and you'll see it comes back to where it belongs.

9. Some compilers optimise parallel loops regardless of the options you specified on the
command line. This has many strange effects, including code that appears to move backwards
as well as forwards, and variables that have nonsense values because they have been optimised
out by the compiler.

We are still working on and improving our OpenMP support — if you are using DDT with OpenMP
and would like to tell us about experiences, then we'd love to hear from you! Please email
support@allinea.com with the subject title “OpenMP feedback”. Thank you!

3.1 Debugging Multi-Process Non-MPI programs

DDT can only launch MPI programs and scalar (single process) programs itself. The Debug a Multi-
Process Non-MPI Program button on the Welcome Screen allows you to debug multi-process and
multi-executable programs. These programs don't necessarily need to be MPI programs. You can
debug programs that use other parallel frameworks, or both the client and the server from a
client/server application in the same DDT session, for example.

You must run each program you want to debug manually using the ddt -client command, similar
to debugging with a scalar debugger like the GNU debugger (gdb). However, unlike a scalar debugger,
you can debug more than one process at the same time in the same DDT session (licence permitting).
Each program you run will show up as a new process in the DDT window.

For example to debug both client and server in the same DDT session:

1. Click on the Manual Launch button.

© 2009 Allinea Software 27

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

2. Select 2 processes.

DDT - Manual Launch

Start debugging after the first process connects

Number of processes 2| ij Number of threads (OpenMP only): Off =

hd|
Advanced >>

Listen J CancelJ

3. Click the Listen button.
4. At the command line run:

ddt-client server &
ddt-client client &

The server process will appear as process 0 and the client as process 1 in the DDT window.

Al o 1]
client El
server El

After you have run the initial programs you may add extra processes to the DDT session (for example
extra clients) using ddt-client in the same way.

ddt-client client2 &

If you check Start debugging after the first process connects you do not need to specify how many
processes you want to launch in advance. You can start debugging after the first process connects and
add extra processes later as above.

3.1 Debugging MPMD Programs

If you are using OpenMPI, DDT can be used to debug MPMD programs. To start an MPMD program
in DDT:

Create an application context file (e.g. my_appfile).

Click the Run button on the Welcome Screen.

Click the Advanced >> button.

Type —app /path/to/my_app_file in the MPIRun Arguments box.
Click the Run button.

e

Note: it doesn't matter what executable you select in the Executable box.

For MPIs other than OpenMPI MPMD programs are supported through the "Manual Launch' feature
(see previous section).

© 2009 Allinea Software 28

Distributed Debugging Tool v2.4

3.1 Opening A Core File

DDT - Open Core

Application: /opt/allinea/ddt/examples/a.out ?J

Core File: fopt/allinea/ddt/exam plesfcnre| ?J

Open J Cancel J

Fig 15: The Open Core Window

DDT allows you to debug a single core file generated by your application.

To debug using a core file, click the Open a Core File button on the Welcome Screen. This opens the
Open Core window, which allows you to select an executable and a core file. Click Open to openthe
core file and start debugging it. While DDT is in this mode, you cannot play, pause or step because
there is no process active. You are, however, able to evaluate expressions and browse the variables
and stack frames saved in the core file. The End Session menu option will return DDT to its normal
mode of operation.

3.2 Attaching To Running Programs

DDT can attach to running processes on any machine you have access to, whether they are from MPI
or scalar jobs, even if they have different executables and source pathnames.

The easiest way to set this up is by following the instructions in the Configuration Wizard, described
elsewhere in this document. However, if you wish to set up attaching manually, this is how to go
about it.

Firstly, either you or your system administrator should provide a script called remote-exec to put
in your ~/ . ddt/ directory. It will be automatically executed like this:

remote-exec HOSTNAME APPNAME [ARG1] [ARG2]

The script must start APPNAME on HOSTNANME with the arguments ARG1 ARG2 and without further
input (no password prompts). Standard output from APPNAME must appear on the standard output of
remote-exec. On most systems the script can be implemented using rsh, as shown here:

#!/bin/sh
rsh $*

This particular implementation depends on having an appropriate . rhosts file in your home
directory as explained in the rsh manpage. DDT comes with a default remote -exec file, set up as
in the above example.

Once the script is set up (we advise testing it at the command-line before using DDT) you must also
provide a plain text file listing the nodes you want DDT to look for processes to attach to. If you ran
the configuration wizard then you may have already made this file during that process, if not then you
now need to create it manually. An example of the contents of this list is:

localhost
comp00
comp01
comp02
comp03

© 2009 Allinea Software 29

Distributed Debugging Tool v2.4

This file can be placed anywhere you have read access to, and may be provided by your system
administrator. DDT must be given the location of this file — to do this just set the Attach Hosts File
option in the Options window (Session — Options). Each host name in this file will be sent to the
remote-exec script as the HOSTNAME argument when DDT scans for and attaches to processes.

With the script and the node list configured, clicking the Attach to a Running Program button on the
Welcome Screen will show DDT's Attach Window:

DDT - Attach to local and remote processes

Application: |Multiple applications selected !J
Filter for process names containing:

v Hide forked children (these may not be part of your MPI job)

1 nodes scanned. Please use the filter/delete button to remove unwanted processes.

Process name | Host |PID | PPII| For| Executable |:J
orted localhost 5892 1 no /usr/local/openmpi-1.2.8_gnu_&4/bin/or...
-python localhost 2969 2905 no /usr/bin/python
~5sh localhost 3347 3316 no /usr/bin/ssh - |
~gsh localhost 3425 3423 no /usr/bin‘ssh
~5sh localhost 3954 3923 no /usr/bin/ssh
F-gsh localhost 5898 5897 no /usr/bin/ssh
D ot rone conn =
Invert selectionJ Clear selectionJ Bemove s,electe::J Rescan nodes
Attach to listed processesJ Cancel J

Fig 16: Attach Window

Initially the list of processes will be blank while DDT scans the nodes, provided in your node list file,
for running processes. When all the nodes have been scanned (or have timed out) the window will
appear as shown above. Use the Filter box to find the processes you want to attach to. On non-Linux
platforms you will also need to select the application executable you want to attach to. Ensure that the
list shows all the processes you wish to debug in your job, and no extra/unnecessary processes. You
may modify the list by selecting and removing unwanted processes, or alternatively selecting the
processes you wish to attach to and clicking on Attach to Selected Processes. If no processes are
selected, DDT uses the whole visible list.

On Linux you may use DDT to attach to multiple processes running different executables. When you
select processes with different executables the application box will change to read Multiple
applications seleted. DDT will create a process group for each distinct executable

With some supported MPI implementations (e.g. OpenMPI) DDT will show MPI processes as
children of the mpirun (or equivalent) command (see figure below). Clicking the mpirun command
will automatically select all the MPI child processes.

Process name | Host ‘ PID | PPII| For‘ Executable
i--mpirun localhost 5830 5675 no /usrlocal/openmpi-1.2.8_gnu_B4/binforterun
hello miyazaki 58930 no /opt/allinea/ddt/examples/hello
hello miyazaki 5824 0 no Jopt/allinea/ddt/examples/hello
hello miyazaki 58350 no J/opt/allinea/ddt/examples/hello
hella miyazaki 5826 0 no /opt/allinea/ddt/examples/hello
Invert selection | Clear selection | Hemove s.ele:te::J Rescan nodes

Fig 18: Attaching with OpenMPi

© 2009 Allinea Software 30

Distributed Debugging Tool v2.4

Some MPI implementations (such as MPICH) create forked (child) processes that are used for
communication, but are not part of your job. To avoid displaying and attaching to these, make sure
the Hide Forked Children box is ticked. DDT's definition of a forked child is a child process that
shares the parent's name. Other MPI implementations (such as MPICH SHMEM and the Scyld
implementation) create your processes as children of each other. If you cannot see all the processes in
your job, try clearing this checkbox and selecting specific processes from the list.

Once you click on the Attach to Selected/Listed Processes button, DDT will use remote-exec to
attach a debugger to each process you selected and will proceed to debug your application as if you
had started it with DDT. When you end the debug session, DDT will detach from the processes rather
than terminating them — this will allow you to attach again later if you wish.

DDT will examine the processes it attaches to and will try to discover the MPI_COMM_WORLD rank of
each process. If you have attached to two MPI programs, or a non-MPI program, then you may see the
following message:

& DDT couldn't find complete MPIL rank information for these processes and has assigned

an arbitrary number to each process instead. You can manually assign ranks with the
"Use as MPI rank" button inside the cross-process comparison window - check the user
guide for details. Set the environment variable DDT_IGNORE_MPI_RANK_ERRORS to 1
to avoid seeing this warning again.

If there is no rank (for example, if you've attached to a non-MPI program) then you can ignore this
message and use DDT as normal. If there is, then you can easily tell DDT what the correct rank for
each process via the Use as MPI Rank button in the Cross-Process Comparison Window — see
section 1.8 Assigning MPI Ranks for details.

Note that the stdin, stderr and stdout (standard input, error and output) are not captured by
DDT if used in attaching mode. Any input/output will continue to work as it did before DDT attached
to the program (e.g. from the terminal or perhaps from a file).

3.2.1 Using DDT Command-Line Arguments

As an alternative to starting DDT and using the Welcome Screen, DDT can instead be instructed to
attach to running processes from the command-line.

To do so, you will need to specify the pathname to the application executable as well as a list of
hostnames and process identifiers (PIDs).

The list of hostnames and PIDs can be given on the command-line using the -attach option:

mark@holly:~$ ddt -attach /home/mark/ddt/examples/hello \
localhost:11057 \
localhost:11094 \
localhost:11352 \
localhost:11362 \
localhost:12357

Another command-line possibility is to specify the list of hostnames and PIDs in a file and use the
-attach-file option:

mark@holly:~$ cat /home/mark/ddt/examples/hello.list
localhost:11057

localhost:11094
localhost:11352

© 2009 Allinea Software 31

Distributed Debugging Tool v2.4

localhost:11362
localhost:12357

mark@holly:~$ ddt -attach-file /home/mark/ddt/examples/hello.list \
/home/mark/ddt/examples/hello

In both cases, if just a number is specified for a hostname:PID pair, then 1localhost : is assumed.

These command-line options work for both single- and multi-process attaching.

3.3 Starting A Job In A Queue

If DDT has been configured to be integrated with a queue/batch environment, as described in section
2.3 Integrating DDT With Queuing Systems then you may use DDT to launch your job. In this case, a
Submit button is presented on the Run Window, instead of the ordinary Run button. Clicking Submit
from the Run Window will display the queue status until your job starts. DDT will execute the display
command every second and show you the standard output. If your queue display is graphical or
interactive then you cannot use it here.

If your job does not start or you decide not to run it, click on Cancel Job. If the regular expression you
entered for getting the job id is invalid or if an error is reported then DDT will not be able to remove
your job from the queue — it is strongly recommend you check the job has been removed before
submitting another as it is possible for a forgotten job to execute on the cluster and either waste
resources or interfere with other debug sessions.

Once your job is running, it will connect to DDT and you will be able to debug it.

3.4 Using Custom MPI Scripts

On some systems a custom 'mpirun’ replacement is used to start jobs, such as mpiexec. DDT will
normally use whatever the default for your MPI implementation is, so for mpich it would look for
mpirun and not mpiexec. This section explains how to configure DDT to use a custom mpirun
command for job startup.

There are typically two ways you might want to start jobs using a custom script, and DDT supports
them both. Firstly, you might pass all the arguments on the command-line, like this:

mpiexec -n 4 /home/mark/program/chains.exe /tmp/mydata
There are several key variables in this line that DDT can fill in for you:

1. The number of processes (4 in the above example)
2. The name of your program (/home/mark/program/chains.exe)
3. One or more arguments passed to your program (/tmp/mydata)

Everything else, like the name of the command and the format of it's own arguments remains constant.

To use a command like this in DDT, we adapt the queue submission system described in the previous
section. For this mpiexec example, the settings would be as shown here:

© 2009 Allinea Software 32

Distributed Debugging Tool v2.4

DDT - Options

. System

Job Submission Settings

l " Job Submission| + Submit job through queue or configure own "mpirun” command

= Submission template file: |
@ Remate Launch

Submit command: hpiexm -n NUM_PROCS_TAG DDTPATH_TAG/binv
Appearance Regexp for job id:
Cancel command:
Display command:
Template Uses
& NUM_PROCS_TAG
4 NUM_NODES_TAG and PROCS_PER_NODE_TAG

PROCS_PER NODE_TAG: |1 S

Edit Queue Submission F’arameters...]

Also submit scalar jobs through the queue

OK Cancel

Fig 17: Using Custom MPI Scripts

As you can see, most of the settings are left blank. Let's look at the differences between the Submit
Command in DDT and what you would type at the command-line:

1. The number of processes is replaced with NUM_PROCS_TAG
2. The name of the program is replaced by the full path to ddt -debugger
3. The program arguments are replaced by PROGRAM_ARGUMENTS_TAG

Note, it is NOT necessary to specify the program name here. DDT takes care of that during its own
startup process. The important thing is to make sure your MPI implementation starts ddt -
debugger instead of your program, but with the same options.

The second way you might start a job using a custom mpirun replacement is with a settings file:
mpiexec -config /home/mark/myapp.nodespec

where myfile.nodespec might contains something like this:
comp00 comp01 comp02 comp03 : /home/mark/program/chains.exe /tmp/mydata

DDT can automatically generate simple config files like this every time you run your program — you
just need to specify a template file. For the above example, the template file myfile.ddt would
contain the following:

comp00 comp01 comp02 comp03 : DDTPATH_TAG/bin/ddt-debugger
DDT_DEBUGGER_ARGUMENTS_TAG PROGRAM_ARGUMENTS_TAG

This follows the same replacement rules described above and in detail in the section on queues. The
options settings for this example might be:

© 2009 Allinea Software 33

Distributed Debugging Tool v2.4

DDT - Options

. System

Job Submission Settings

- ' Job Submission| + Submit job through queue or configure own "mpirun” command

= Submission template file: /opt/allinea/ddt/templates/template.qtf =
Remote Launch

Submit command:

Appearance Regexp for job id:
Cancel command:
Display command:
Template Uses
® NUM_PROCS_TAG
4 NUM_NODES_TAG and PROCS_PER_NODE_TAG

PROCS_PER NODE_TAG: |1 S

Edit Clueue Submission Parameters...]

Also submit scalar jobs through the queue

OK Cancel

Fig 18: Using Substitute MPI Commands

Note the Submit Command and the Submission Template File in particular. DDT will create a new file
and append it to the submit command before executing it. So, in this case what would actually be
executed might be mpiexec -config /tmp/ddt-temp-0112 orsimilar. Therefore, any
argument like -config must be last on the line, because DDT will add a filename to the end of the
line. Other arguments, if there are any, can come first.

We recommend reading the section on queue submission, as there are many features described there
that might be useful to you if your system uses a non-standard startup command. If you do use a non-
standard command, please email us at support@allinea.com and let us know about it — you might find
the next version supports it out-of-the-box!

3.1 Starting DDT From A Job Script

The usual way of debugging a program with DDT in a queue/batch environment is to configure DDT
to submit the program to the queue for you (see section 3.3 Starting a Job In A Queue above).

Some users may wish to start DDT itself from a job script that is submitted to the queue/batch
environment. To do this:

1.Configure DDT with the correct MPI implementation.

2.Disable queue submission in the DDT options.

3.Create a job script that starts DDT using the command

ddt -start -once -n NPROCS -- PROGRAM [ARGUMENTS]...

where NPROCS is the number of processes to start
PROGRAM is the program to run

and ARGUMENTS are the arguments to the program
4.Submit the job script to the queue.

The -once argument tells DDT to exit when the session ends.

© 2009 Allinea Software 34

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

Alternatively you can invoke mpirun or equivalent directly from the job script instead of through
DDT using the following commands:

ddt -once -norun -n NPROCS PROGRAM &
mpirun -np NPROCS ddt-debugger --ddtwaitforsession [ARGUMENTS]...
wait

where NPROCS, PROGRAM, and ARGUMENTS are as above.

3.1 Choosing The Right Debugger

DDT uses an enhanced version of GDB with complete F90 and F95 support — this will normally be
chosen automatically — on all platforms except for Solaris where DBX is preferred. We recommend
that you keep the debugger set to Automatic which will choose the correct debugger for your platform.
Should you wish to use an alternative debugger, this can be configured from the session options menu
but please note this is not recommended and is unsupported: the other debuggers can vary greatly
between minor versions in such a way as to render DDT support impossible.

3.2 Notes on X Forwarding or VNC for remote users

Many users of DDT choose to display DDT on a machine that is not the actual cluster/machine that is
running the DDT GUI, for example when accessing a departmental/facility cluster resource from their
desktop/laptop. There are two methods for achieving this: X forwarding and VNC (or similar Unix-
supporting remote desktop software).

X forwarding is effective when the network connection is very good. VNC is strongly recommended
when the network connection is moderate or slow.

e Apple users accessing a Linux or other Unix machine whilst using a single-button mouse
should be advised that pressing the “Command” key and the single mouse button will have the
same effect as right clicking on a two button mouse. Right clicking is an important action in
DDT: for example in each of the source code browser, the parallel stack view and variable
views, right clicking will access some of the important features in DDT.

To use X forwarding and DDT with an Apple on a remote Linux/Unix system, start the X11
server (available in the X11User.pkg), then:

e Set the display variable correctly to allow X applications to display by opening a
terminal in OS/X and typing

export DISPLAY=:0

@ Then ssh to the remote system from that terminal, with ssh options -X and -C (X
forwarding and compression). For example:

ssh -CX username@login.mybigcluster.com
e Now start DDT on the remote system and the display will appear on your Mac.

e Windows users can use any one of a number of commercial and open source X servers, but
may find VNC a viable alternative (www.realvnc.com) which is available under free and
commercial licensing options.

e VNC allows users to access a desktop running on a remote server (eg. a cluster frontend). By
setting up an “SSH tunnel” users are usually able to access this remote desktop from
anywhere, securely, and, due to its own display protocols, will see a reduction in X11 traffic,
which makes DDT very rapid to use remotely.

© 2009 Allinea Software 35

http://www.realvnc.com/
http://www.realvnc.com/
http://www.realvnc.com/
mailto:username@login.mybigcluster.com
mailto:username@login.mybigcluster.com
mailto:username@login.mybigcluster.com

Distributed Debugging Tool v2.4

e Touse VNC and DDT, log in to the remote system and set up a tunnel for port
5901 and 5801. On Apple or any Linux/Unix system this is set by options to
SSH. For SSH using Putty on Windows, select options in the GUI to set tunnels.

ssh -L 5901:1ocalhost:5901 -L 5801:localhost:5801
username@login.mybigcluster.com

e At the remote prompt, start vncserver. If this is the first time you have used VNC
it will ask you to set an access password.

vncserver

The output from vncserver will tell you which ports VNC has started on —
5800+n and 5900+n, where “n” is the number given as “hostname:n” in the
output. If this number, n, is not 1, then another user is already using VNC on that
system, and you should set a new tunnel to these ports by logging in to the same
host again and changing the settings to the new ports (or use SSH escape codes to
add a tunnel, see the SSH manual pages for details).

e Now, on the local desktop/laptop, either use a browser and access the desktop
within the browser by entering the URL http://localhost:5801, or (better) you may
use a separate VNC client such as krdc or vncviewer.

krdc localhost:1 or vncviewer localhost:1
If “n” is not 1, as described above, use :2, :3 etc. as appropriate instead.

e Note that a bug in the browser based access method means the “Tab” key does
not work correctly in VNC. but krdc or vncviewer users are not affected by this
problem.

e VNC also frequently defaults to an old X window manager (twm), this can be

changed by editing the ~/.vnc/xstartup file to use KDE or GNOME and restarting
the VNC server.

© 2009 Allinea Software 36

http://localhost:5801/
http://localhost:5801/
http://localhost:5801/
mailto:username@login.mybigcluster.com
mailto:username@login.mybigcluster.com
mailto:username@login.mybigcluster.com

Distributed Debugging Tool v2.4

1 DDT Overview

DDT uses a tabbed-document interface — a method of presenting multiple documents that is familiar
from many present day applications. This allows you to have many source files open, and to view one

(or two, if the Source Code Viewer is 'split') in the full workspace area.

Each component of DDT (labelled and described in the key) is a dockable window, which may be
dragged around by a handle (usually on the top or left-hand edge). Components can also be double-
clicked, or dragged outside of DDT, to form a new window. You can hide or show most of the
components using the View menu. The screen shot shows the default DDT layout.

Allinea Distributed Debugging Tool

Session Control Search View Help @l
[o = r =TE="Y=1 =T
|»[6 B33 REEISEIEN-D-Q)
|Current Group: Al - Focus on current: ® Group () Process () Thread | Step Threads Toge:rer;
o Q CICEIEIEEIEEE] E et fe] fe] []
|| Create Group
helloc x Local Variables B
Project Files | Fortran Modules | 129 2] | Locals | Current Line(s) | stack |
PW!“' Files o test.anotherList. subList.charStar = "hello”; | Variable Name [VHJUE =
+- & Source Tree Eest.c = }"‘ID‘.:JJ -arge 1 o
+E3Header Files i -argv Ox7113c60e978
;";ﬁSUUWE‘F”E‘S 135 4f (my_rank |= 0 && !(p==7 & my_rank==3)) /* delit -beingWatched 0
=@ hello.c i) .) . -bigArray
E-ﬂlunct::n:vold spmntfgmessage, Greetings from prgcess %d!, et :
: I printf("sending message from (%d)\n", my_rank); s
[~ Efunca() : int 139 dest = 0;) ~dynamicArray OxaBads0
- Bfuncd) : void | 4 /* Use strienimessage)+l to include '\O' */ k :
- @main(nt arge, char* argy, ch|| © 22 MPI_Send(message, strien(message)+1, MPI_CHAR enen 017IcBbeccl
' J 14 beingWatched--; -l 1
I % else {) -message "Greetings from proc
| 4 /* my_rank == 0 */ . 7
| 4 foE {SoUrce = 1; SOUFCE < p; SOUFCE++) 16
| 4§ .
| 47 printf("waiting for message from (3d)\n" sour || s 0x400¢10 <_start>
O 148 MPI_Recv(message, 100, MPI_CHAR, source, tad, || .gouce 4199065
4 printf{"%§s\n", message);
15¢ beingWatched++; status
e 3 12 0xBB6010
1523 tables ~
E for(i=1:1 4+ 4 2
15 or{i=1:icarac: i++ = -
il—J. 0 ‘|] [»] |[Type:int
] inpuOutput' | Breakpoints | Watches Stacks | ! Expression |vaue |
[Prcs [Functn | Cy_rank 7 o
1| -main (hello.c:148)
s o e 1) @
E
=
[¢]
w -E
8 El
8]
£ i —
o DDT
Key
(1) Menu Bar

(2) Process Controls

(3) Process Groups

(4) Project Navigator

(5) Source Code

(6) Variables and Stack of Current Process/Thread

(7) Parallel Stack, IO and Breakpoints

(8) Evaluate Window

(9) Status Bar

Fig 19: DDT Main Window

© 2009 Allinea Software

37

Distributed Debugging Tool v2.4

Please note that on some platforms, the default screen size can be insufficient to display the status bar
— if this occurs, you should expand the DDT window until DDT is completely visible.

1.1 Setting The Font and Tab Sizes

DDT should automatically select a suitable fixed width font to display your source files. You can
change this font by choosing the Options menu item in the Session menu. You can change the font and
font size in the Options window, as well as the tab size (typically 2, 4 or 8 spaces).

DDT inherits many of your font settings from your Desktop Environment (e.g. KDE , GNOME or
CDE). To change these, you should use the Desktop Settings configuration tool that is provided by
the Desktop Environment.

1.2 Saving And Loading Sessions

Most of the user-modified parameters and windows are saved by right-clicking and selecting a save
option in the corresponding window.

However, DDT also has the ability to load and save all these options concurrently to minimize the
inconvenience in restarting sessions. Saving the session stores such things as Process Groups, the
contents of the Evaluate window and more. This ability makes it easy to debug code with the same
parameters set time and time again.

To save a session simply use the Save Session option from the Session menu. Enter a filename (or
select an existing file) for the save file and click OK. To load a session again simply choose the Load
Session option from the Session menu, choose the correct file and click OK.

1.3 Source Code

When DDT begins a session, source code is automatically found from the information compiled in the
executable.

Source and header files found in the executable are reconciled with the files present on the front-end
server, and displayed in a simple tree view within the Project Files tab of the Project Navigator
window. Source files can be loaded for viewing by clicking on the filename.

Whenever a selected process is stopped, the Source Code Viewer will automatically leap to the correct
file and line, if the source is available.

1.4 Finding Lost Source Files

On some platforms, not all source files are found automatically. This can also occur, for example, if
the executable or source files have been moved since compilation. Extra directories to search for
source files can be added by right-clicking whilst in the Project Files tab, and selecting Add/view
Source Directory(s).

It is also possible to add an individual file — if, for example, this file has moved since compilation or is
on a different (but visible) filesystem — by right-clicking in the Project Files tab and selecting the Add
File option.

Any directories or files you have added are saved and restored when you use the Save Session and

Load Session commands inside the Session menu. If DDT doesn't find the sources for your project,
you might find these commands save you a lot of unnecessary clicking.

© 2009 Allinea Software 38

Distributed Debugging Tool v2.4

1.5 Finding Code Or Variables

The Find and Find In Files windows are found from the Search menu. The Find window will find
occurrences of an expression in the currently visible source file. The Find In Files window searches
all source and header files associated with your program and lists the matches in a result box. Click on
a match to display the file in the main Source Code Viewer and highlight the matching line; this can be
of particular use for setting a breakpoint at a function. Note that both searches are regular expression
based. The syntax of the regular expression is identical to that described in the batch system (queue)
configuration in the preceding chapter.

1.6 Jump To Line / Jump To Function

DDT has a jump to line function which enables the user to go directly to a line of code. This is found
in the Search menu. A window will appear in the center of your screen. Enter the line number you
wish to see and click OK. This will take you to the correct line providing that you entered a line that
exists. You can use the hotkey CTRL-G to access this function quickly.

DDT also allows you to jump directly to the implementation of a function. In the Project Files tab of
the Project Navigator window on the left side of the main screen you should see small + symbols next

to each file:
& P hello.c

Bilint func2(})
g-"Eﬂint main(int argc, cha
Bilvoid funcl()
- Bvoid func3()
Fig 20: Function Listing

Clicking on a the + will display a list of the functions in that file. Clicking on any function will
display it in the Source Code viewer.

If your system has the program etags installed in your PATH, DDT will use this to provide faster and
more accurate parsing of C/C++ files. If not then a default algorithm will be used that is less effective
and, for example, pays no attention to preprocessor definitions. Regardless of which method is used,
some language constructs (particularly templated functions) may not be shown in this view.

1.7 Editing Source Code

You can the right click in the Source Code Viewer and select the Open file in editor option to open the
current file in the default editor for your desktop environment. If you want to change the editor used,
or the file doesn't open with the default settings, open the Options window by selecting the Options
menu item from the Session menu and enter the path of your preferred editor in the Editor box, e.g.
/usr/bin/gedit.

© 2009 Allinea Software 39

Distributed Debugging Tool v2.4

2 Controlling Program Execution

Whether debugging a multi-process or a single process code, the mechanisms for controlling program
execution are very similar.

In multi-process mode, most of the features described in this section are applied using Process
Groups, which we describe now. For single process mode, the commands and behaviours are
identical, but apply to only a single process — freeing the user from concerns about process groups.

2.1 Process Control And Process Groups

MPI programs are designed to run as more than one process and can span many machines. DDT
allows you to group these processes so that actions can be performed on more than one process at a
time. The status of processes can be seen at a glance by looking at the Process Group Viewer.

The Process Group Viewer is (by default) at the top of the screen with multi-coloured rows. Each row
relates to a group of processes and operations can be performed on the currently highlighted group
(e.g. playing, pausing and stepping) by clicking on the toolbar buttons. Switch between groups by
clicking on them or their processes - the highlighted group is indicated by a lighter shade. Groups can
be created, deleted, or modified by the user at any time, with the exception of the All group, which
cannot be modified.

Groups are added by clicking on the Create Group button or from a context-sensitive menu that
appears when you right-click on the process group widget. This menu can also be used to rename
groups, delete individual processes from a group and jump to the current position of a process in the
code viewer. You can load and save the current groups to a file, and you can create sub-groups from
the processes currently playing, paused or finished. You can even create a sub-group excluding the
members of another group — for example, to take the complement of the “Workers” group, select the
All group and choose “Copy, but without Workers™.

You can also use the context menu to switch between the two different ways of viewing the list of
groups in DDT - the detailed view and the summary view:

2.1.1 Detailed View

The detailed view is ideal for working with smaller numbers of processes. If your program has less
than 32 processes, DDT will default to the detailed view. You can switch to this view using the
context menu if you wish.

Current Group: Workers ~ Focus on current: ' ¢
g NN B
Root El
Workers II| IZ|

Create Group

Project Navigator %|| hello.c x

Fig 21: The Detailed Process Group View

In the detailed view, each process is represented by a square containing its MPI rank (0 through n-1).
The squares are colour-coded; red for a paused process, green for a running process and grey for a
finished/dead process. Selected processes are highlighted with a lighter shade of their colour and the
current process also has a dashed border.

When a single process is selected the local variables are displayed in the Variable Viewer and
displayed expressions are evaluated. You can make the Source Code Viewer jump to the file and line
for the current stack frame (if available) by double-clicking on a process.

© 2009 Allinea Software 40

Distributed Debugging Tool v2.4

To copy processes from one group to another, simply click and drag the processes. To delete a
process, press the delete key. When modifying groups it is useful to select more than one process by
holding down one or more of the following:

Key Description

Control Click to add/remove process from selection
Shift Click to select a range of processes

Alt Click to select an area of processes

Note: Some window managers (such as KDE) use Alt and drag to move a window - you must disable this feature
in your window manager if you wish to use the DDT's area select.

2.1.2 Summary View

The summary view is ideal for working with moderate to huge numbers of processes. If your program
has 32 processes or more, DDT will default to this view. You can switch to this view using the context
menu if you wish.

Current Group:| All - |Focus on current: " Group ‘) Process () Thread Step 1
All 16 processes (0-15) Paused: 15 Running: 1
Show processes | Currently selected: 1

Root 1 process (0) Running: 1

Workers 15 processes (1-15) Paused: 15

Create Group

Fig 22: The Summary Process Group View

In the summary view, individual processes are not shown. Instead, for each group, DDT shows:
e The number of processes in the group.

@ The processes belonging that group — here “1-2048” means processes 1 through 2048
inclusive, and “1-10, 12-1024” means processes 1-10 and processes 12-1024 (but not process
11). If this list becomes too long, it will be truncated with a “...”. Hovering the mouse over the
list will show more details.

e The number of processes in each state (running, paused or finished). Hovering the mouse over
each state will show a list of the processes currently in that state.

e The rank of the currently-selected process. You can change the current process by clicking
here, typing a new rank and pressing Enter. Only ranks belonging to the current group will be
accepted.

The “Show processes” toggle button allows you to switch a single group into the detailed view and
back again — handy if you're debugging a 2048 process program but have narrowed the problem down
to just 12 processes, which you've put in a group.

2.1 Focus Control

Focus on current: '} Group ‘® Process U Thread ||+ Step Threads Together
Fig 23: Focus options

The focus control allows you to focus on individual processes or threads as well as process groups.
When focused on a particular process or thread, actions such as stepping, playing/pausing, adding
breakpoints etc. will only apply to that process/thread rather than the entire group. In addition, the
DDT GUI will change depending on whether you're focused on group, process or thread. This allows
DDT to display more relevant information about your currently focused object.

© 2009 Allinea Software 41

Distributed Debugging Tool v2.4

2.1.1 Overview of changing focus

Focusing in DDT affects a number of different controls in the DDT main window. These are briefly
described below:

Note: Focus controls do not affect DDT windows such as the Multi Dimensional Array Viewer, Memory
Debugger, Cross Process Comparison etc.

2.1.2 Process Group Viewer

The changes to the process group viewer amongst the most obvious changes to the DDT GUI. When
focus on current group is selected you will see your currently created process groups. When switching
to focus on current process or thread you will see the view change to show the processes in the
currently selected group, with their corresponding threads.

Current Group:| All - |Focus on current: i} €

(A CEEE]

Process 0's threads: @
Project Mavigator =1 hello.c x

Fig 24: The Detailed Process Group View Focused on a Process

If there are 32 threads or more, DDT will default to showing the threads using a summary view (as in
the Process Group View). The view mode can also be changed using the context menu.

2.1.3 Breakpoints

The breakpoints tab in DDT will be filtered to only display breakpoints relevant to your current group,
process, thread. When focused on a process, The breakpoint tab will display which thread the
breakpoint belongs to. If you are focused on a group, the tab will display both the process and the
thread the breakpoint belongs to.

2.1.4 Code Viewer

The code viewer in DDT shows a backtrace of where each thread is in the call stack. This will also be
filtered by the currently focused item, for example when focused on a particular process, you will only
see the backtrace for the threads in that process.

Also, when adding breakpoints using the code viewer, they will be added for the group, process or
thread that is currently focused.

2.1.5 Parallel Stack View

The parallel stack view can also be filtered by focusing on a particular process group, process or
thread.

2.1.6 Input and Output (stdin, stdout and stderr)

Switching focus will also affect how the Input/Output tab functions in DDT. Input and output is done
on a per-process basis, so focusing on a thread has the same effect as focusing on the thread's parent
process.

When focused on a group, stdin input will be sent to each process in that group, whereas focusing on a
process (or a thread) will send the input only to that process.

Similarly, stdout and stderr output is shown from all process in a focused group, whereas selecting a

single process (or thread) will filter the output to that process. Filtering can also be controlled using
the combo box on the Input/Output tab.

© 2009 Allinea Software 42

Distributed Debugging Tool v2.4

Note: Some MPI statup methods such as MPICH Standard register stdin, stdout and stderr through process 0
only, which will prevent this feature from working.

2.1.7 Playing and Stepping

The behaviour of playing, stepping and the Run to here feature are also affected by your currently
focused item. When focused on a process group, the entire group will be affected, whereas focusing on
a thread will mean that only current thread will be executed. The same goes for processes, but with an
additional option which is explained below.

2.1.8 Step Threads Together

The step threads together feature in DDT is only available when focused on process. If this option is
enabled then DDT will attempt to synchronise the threads in the current process when performing
actions such as stepping, pausing and using “Run to here”.

For example, if you have a process with 2 threads and you choose “Run to here”, DDT will pause your
program when either of the threads reaches the specified line. If “Step threads together is selected”
DDT will attempt to run both of the threads to the specified line before pausing the program.

Important note: You should always use “Step threads together” and “Run to here” to enter or move
within OpenMP parallel regions. With many compilers it is also advisable to use “Step threads
together” when leaving a parallel region, otherwise threads can get “left behind” inside system-
specific locking libraries and may not enter the next parallel region on the first attempt.

2.1.9 Stepping Threads Window

When using the step threads together feature it is not always possible for all threads to synchronise at
their target. There are two main reasons for this:

1. One or more threads may branch into a different section of code (and hence never reach the
target). This is especially common in OpenMP codes, where worker threads are created and
remain in holding functions during sequential regions.

2. Asmost of DDT's supported debug interfaces cannot run arbitrary groups of threads together,
DDT simulates this behaviour by running each thread in turn. This is usually not a problem,
but can be if, for example, thread 1 is running, but waiting for thread 2 (which is not currently
running). DDT will attempt to resolve this automatically but cannot always do so.

If either of these conditions occur, the Stepping Threads Window will appear, displaying the threads
which have not yet reached their target.

© 2009 Allinea Software 43

Distributed Debugging Tool v2.4

[+
AR D i bty

DDT is waiting for thread 2 to finish before it
can step the rest. You can wait, skip it, or try
it again after the other threads have stepped.

Thread Status
thread 0 done

thread 1 skipped
thread 3 waiting

Skip Try Later Skip All

Fig 25: The Stepping Threads Window

The stepping threads window also displays the status of threads, which may be one of the following:

Done: The thread has reached it target (and has been paused).

Skipped: The thread has been skipped (and paused). DDT will no longer wait for it to reach
it's target.

Running: This is the thread that is currently being executed. Only one thread may be running
at a time while the Stepping Threads Window is open.

Waiting: The thread is currently awaiting execution. When the currently “running” thread is
“done” or has been skipped, the highest “waiting” thread in the list will be executed.

The stepping threads window also lets you interact with the threads with the following options:

Skip: DDT will skip and pause the currently running thread. If this is the last waiting thread
the window will be closed.

Try Later: The currently running thread will be paused, and added to the bottom of the list of
threads to be rerun later. This is useful if you have threads which are waiting on each other.

Skip All: This will skip (and pause) all of the threads and close the window.

2.1 Hotkeys

DDT comes with a pre-defined set of hotkeys to enable easy control of your debugging. All the
features you see on the toolbar and several of the more popular functions from the menus have hotkeys
assigned to them. Using the hotkeys will speed up day to day use of DDT and it is a good idea to try
to memorize these.

© 2009 Allinea Software 44

Distributed Debugging Tool v2.4

Key Function
F9 Play

F10 Pause

F5 Step into
F8 Step over
F6 Step out

CTRL-D | Down stack frame

CTRL-U | Up stack frame

CTRL-B | Bottom stack frame

CTRL-A | Align stack frames with current
CTRL-G | Goto line number

CTRL-F | Find

2.2 Starting, Stopping And Restarting A Program

The Session menu can be accessed at almost any time while DDT is running. If a program is running
you can end it and run it again or run another program. When DDT'"s startup process is complete your
program should automatically stop either at the main function for non-MPI codes, or at the
MPI_Init function for MPI.

When a job has run to the end DDT will show a window box asking if you wish to restart the job. If
you select yes then DDT will kill any remaining processes and clear up the temporary files and then
restart the session from scratch with the same program settings.

When ending a job, DDT will attempt to ensure that all the processes are shutdown and clear up any
temporary files. If this fails for any reason you may have to manually kill your processes using kill,
or a method provided by your MPI implementation such as lamclean for LAM/MPI.

2.3 Stepping Through A Program

To start the program running click Play/Continue ¥ and to stop it at any time click Pause '!. For
multi-process DDT these start/stop all the processes in the current group (see Process Control and
Process Groups).

Like many other debuggers there are three different types of step available. The first is Step Into that
will move to the next line of source code unless there is a function call in which case it will step to the
first line of that function. The second is Step Over that moves to the next line of source code in the
bottom stack frame. Finally, Step Out will execute the rest of the function and then stop on the next
line in the stack frame above.

When using Step Out be careful not to try and step out of the main function, as doing this will end
your program.

2.4 Stop Messages

In certain circumstances your program may be automatically paused by the debugger. There are five
reasons your program may be paused in this way:

1. It hit one of DDT's default breakpoints (e.g. exit or abort). See section 2.6 Default
Breakpoints for more information on default breakpoints.
2. It hit a user-defined breakpoint (a breakpoint shown in the Breakpoints view).

3. The value of a watched variable changed.

4. Tt was sent a signal. See section 2.2 Signal Handling for more information on signals.

© 2009 Allinea Software 45

Distributed Debugging Tool v2.4

5. It encountered a Memory Debugging error. See section 4.1.1 for more information on Memory
Debugging errors.

DDT will display a message telling you exactly why the program was paused. The text may be copied
to the clipboard by selecting it with the mouse, then right-clicking and selecting Copy. You may want
to suppress these messages in certain circumstances, for example if you are running between several
breakpoints. Use the Control — Messages menu to enable/disable stop messages.

2.1 Setting Breakpoints
2.1.1 Using the Source Code Viewer

First locate the position in your code that you want to place a breakpoint at. If you have a lot of source
code and wish to search for a particular function you can use the Find/Find In Files window. Clicking
the right mouse button in the Source Code Viewer displays a menu showing several options, including
one to add or remove a breakpoint. In multi-process mode this will set the breakpoint for every
member of the current group.

Every breakpoint is listed under the breakpoints tab towards the bottom of DDT's window.

If you add a breakpoint at a location where there is no executable code, DDT will highlight the line
you selected as having a breakpoint. However when hitting the breakpoint, DDT will stop at the next
executable line of code.

2.1.2 Using the Add Breakpoint Window

You can also add a breakpoint by clicking the Add Breakpoint e icon in the toolbar. This will open
the Add Breakpoint window.

DDT - Add Breakpoint

Location
® Line Eile: /opt/allinea/ddt/examples/hello.c EJ
Line Number: 148
4 Function
Applies To
Process Group: All hd
Brocess: Process 0 =
Thread: All -
Condition:
Language: | Auto
Add J Cancel J

Fig 26: The Add Breakpoint window

You may wish to add a breakpoint in a function for which you do not have any source code: for
example in malloc, exit, or printf from the standard system libraries. Select the Function radio
button and enter the name of the function in the box next to it.

You can specify what group/process/thread you want the breakpoint to apply in the Applies To section.

You may also make the breakpoint conditional by checking the Condition checkbox and entering a
condition in the box.

© 2009 Allinea Software 46

Distributed Debugging Tool v2.4

2.1.3 Pending Breakpoints

Note: This feature is not supported on all platforms.

If you try to add a breakpoint on a function that is not defined, DDT will ask if you want to add it

anyway. If you click Yes the breakpoint will be applied to any shared objects that are loaded in the
future.

2.2 Conditional Breakpoints

<! Input/Output* Breakpoints (Process 0) | Watches = Stacks (Proce! | »

|Pro-ce55e5 |Thread5 |FII<-:- |Llne |Funct|on |Cond|tlon |Fu||p
v Al hello.c /home

TR I Y I = - o

5
(=1
5
Q
w
0
[+F)
8
o

4

| -+
Fig 27: The Breakpoints Table

Select the breakpoints tab to view all the breakpoints in your program. You may add a condition to
any of them by clicking on the condition cell in the breakpoint table and entering an expression that
evaluates to true or false. Each time a process (in the group the breakpoint is set for) passes this
breakpoint it will evaluate the condition and break only if it returns true (typically any non-zero
value). You can drag an expression from the Evaluate window into the condition cell for the
breakpoint and this will be set as the condition automatically.

<! Input/Output = Breakpoints | Watches @ Stacks

| Processes |Thread5 | File | Line | Function |Cond|t|on | Full pa

< Al hello.f20 55 ‘hame/:

T Y -+ <. o]
2
=
O
w
w
[H]

Sla J 0
o

Fig 28: Conditional Breakpoints In Fortran

The expression should be in the same language as your program. Also, please note the condition
evaluator is quite pedantic with Fortran conditions, and to ensure the correct interpretation of
compound boolean operations, it is advisable to bracket your expressions amply.

2.3 Suspending Breakpoints

A breakpoint can be temporarily deactivated and reactivated by checking/unchecking the activated
column in the breakpoints panel.

2.4 Deleting A Breakpoint

Breakpoints are deleted by either right-clicking on the breakpoint in the breakpoints panel, or by right-
clicking at the file/line of the breakpoint whilst in the correct process group and right-clicking and
selecting delete breakpoint.

2.5 Loading And Saving Breakpoints

To load or save the breakpoints in a session right-click in the breakpoint panel and select the load/save
option. Breakpoints will also be loaded and saved as part of the load/save session.

© 2009 Allinea Software 47

Distributed Debugging Tool v2.4

2.6 Default Breakpoints

DDT has a number of default breakpoints that will stop your program under certain conditions which
are described below. You may enable/disable these while your program is running using the
Control — Default Breakpoints menu.

2.6.1 Stop at exit/_exit
When enabled, DDT will pause your program as it is about to end under normal exit conditions. DDT
will pause both before and after any exit handlers have been executed. (Disabled by default.)

2.6.2 Stop at abort/fatal MPI Error

When enabled, DDT will pause your program as it about to end after an error has been triggered. This
includes MPI and non-MPI errors. (Enabled by default.)

2.6.3 Stop on throw (C++ exceptions)

When enabled, DDT will pause your program whenever an exception is thrown (regardless of whether
or not it will be caught). Due to the nature of C++ exception handling, you may not be able to step
your program properly at this point. Instead, you should play your program or use the “Run to here”
feature in DDT. (Disabled by default.)

2.6.4 Stop on catch (C++ exceptions)

As above, but triggered when your program catches a thrown exception. Again, you may have trouble
stepping your program. (Disabled by default.)

2.6.5 Stop at fork

DDT will stop whenever your program forks (i.e. calls the fork system call to create a copy of the
current process). The new process is added to your existing DDT session and can be debugged along
with the original process.

2.6.6 Stop at exec

When your program calls the exec system call, DDT will stop at the main function (or program body
for Fortran) of the new executable.

2.7 Synchronizing Processes

If the processes in a process group are stopped at different points in the code and you wish to re-
synchronize them to a particular line of code this can be done by right-clicking on the line at which
you wish to synchronize them to and selecting Run To Here. This effectively sets all the processes in
the selected group running and puts a break point at the line at which you choose to synchronize the
processes at, ignoring any breakpoints that the processes may encounter before they have
synchronized at the specified line.

If you choose to synchronize your code at a point where all processes do not reach then the processes
that cannot get to this point will run to the end.

Note: Though this ignores breakpoints while synchronizing the groups it will not actually remove the
breakpoints.

Note: If a process is already at the line which you choose to synchronize at, the process will still be set to run.

Be sure that your process will revisit the line, or alternatively synchronize to the line immediately dfter the
current line.

© 2009 Allinea Software 48

Distributed Debugging Tool v2.4

2.8 Setting A Watch

B Input/Output* Breakpoints ~ Watches | Stacks

Process | Expression |Stack frame
0)x #0 main

=
Fig 29: The Watches Table

A watchpoint is a type of breakpoint that monitors a variable's value and causes a break once the value
is changed.

A%

Fig 30: Program Stopped At Watchpoint “x”

Unlike breakpoints, it is not set on a line in the Source Code Viewer. Instead you must drag a variable
from either the Variables Window or the Evaluate Window into the Watches Table. Tt is not generally
useful to watch a variable that is allocated on the stack rather than the heap, DDT will remove a
watchpoint when its variable goes out of scope. Variables on the heap do not go out of scope.

For multi-process debugging, watches can only be set on a single process and not a whole group.

2.9 Examining The Stack Frame

Local Variables B
Locals | Current Line(s) = Stack

Stack Arguments

#2 main (argc=1, argv=0x7fffbd2f25c8, e
#1 funci () at /home/cjanuary/code/ddt/e

#0 func2 () at /home/cjanuary/code/ddt/d

£ 0]
Type: none selected
Fig 30: The Stack Tab

The stack back trace for the current process and thread are displayed under the Stack tab of the

Variables Window. When you select a stack frame DDT will jump to that position in the code (if it is
available) and will display the local variables for that frame. The toolbar can also be used to step up or

down the stack, or jump straight to the bottom-most frame.

© 2009 Allinea Software

49

Distributed Debugging Tool v2.4

2.10 Align Stacks

The align stacks button, or CTRL-A hotkey, sets the stack of the current thread on every process in a
group to the same level — where possible — as the current process.

This feature is particularly useful where processes are interrupted — by the pause button — and are at
different stages of computation. This enables tools such as the Cross-Process Comparison Window to
compare equivalent local variables, and also simplifies casual browsing of values.

2.11 “Where are my processes?” - Viewing Stacks in Parallel

2.11.1 Overview

To find out where your program is, in one single view, look no further than the Parallel Stack View.
It's found in the bottom area of DDT's GUI, tabbed alongside Input/Output, Breakpoints and Watches:

H Input/Output | Breakpoints ~ Watches @ Stacks

Procs | Function

=main (matrix_mult.cpp:142)

receive<MPI::Intracomm, double= (matrix_mult.cpp:35)
5 main (matrix_mult.cpp:160)

E--calculate-:double:r (matrix_mult.cpp:55)
é--calculate-:double:r (matrix_mult.cpp:g2)
-calculate<double> (matrix_mult.cpp:6E)

.._..;.Jn_.

Frocess Output

Fig 31: Parallel Stack View

Do you want to know where a group's processes are? Click on the group and look at the Parallel Stack
View — it shows a tree of functions, merged from every process in the group (by default). If there's
only one branch in this tree — one list of functions — then all your processes are at the same place. If
there are several different branches, then your group has split up and is in different parts of the code!
Click on any branch to see its location in the Source Code Viewer, or hover your mouse over it and a
little popup will list the processes at that location. Right-click on any function in the list and select
New Group to automatically gather the processes at that function together in a new group, labelled by
the function's own name.

The best way to learn about the Parallel Stack View is to simply use it to explore your program. Click
on it and see what happens. Create groups with it, and watch what happens to it as you step processes
through your code. The Parallel Stack View's ability to display and select large numbers of processes
based on their location in your code is invaluable when dealing with moderate to large numbers of
processes.

2.11.2 The Parallel Stack View in Detail

The Parallel Stack View takes over much of the work of the Stack display, but instead of just showing
the current process, this view combines the call trees (commonly called stacks) from many processes
and displays them together. The call tree of a process is the list of functions (strictly speaking frames
or locations within a function) that lead to the current position in the source code. For example, if
main() calls read_input(), and read_input () calls open_file(), and you stop the
program inside open_file(), then the call tree will look like this:

main()

read_input()
open_file()

© 2009 Allinea Software 50

Distributed Debugging Tool v2.4

If a function was compiled with debug information (usually -g) then DDT adds extra information,
telling you the exact source file and line number that your code is on. Any functions without debug
information are greyed-out and are not shown by default. Functions without debug information are
typically library calls or memory allocation subroutines and are not generally of interest. To see the
entire list of functions, right-click on one and choose Show Children from the pop-up menu.

You can click on any function to select it as the 'current' function in DDT. If it was compiled with
debug information, then DDT will also display its source code in the main window, and its local
variables and so on in the other windows.

One of the most important features of the Parallel Stack View is its ability to show the position of
many processes at once. Right-click on the view to toggle between:

1. Viewing all the processes in your program at once
2. Viewing all the processes in the current group at once (default)
3. Viewing only the current process

The function that DDT is currently displaying and using for the variable views is highlighted in dark
blue. Clicking on another function in the Parallel Stack View will select another frame for the source
code and variable views. It will also update the Stack display, since these two controls are
complementary. If the processes are at several different locations, then only the current process'
location will be shown in dark blue. The other processes' locations will be shown in a light blue:

Procs Function

1 s main (hello.c:154)
15[____]=main (hello.c:128)
15[] “funcl (hello.c:42)
151 ‘func2 (hello.c:33)

In the example above, the program's processes are at two different locations. One process is calling
PMPI_RecV from the main function, at hello. c line 154, and the other 15 processes are all inside
a function called func2, specifically at line 33 of hello.c. All these processes reached this line of
func2 in the same way — first main called funcl on line 128 of hello. c, and then func1l called
func2 on line 42 of hello.c. Clicking on any of these functions will show the exact line of source
code, and will display the state of the variables in that function when the call was made.

There are two optional columns in the Parallel Stack View. The first, Procs shows the number of
processes at each location. The second, Threads, shows the number of threads at each location. By
default, only the number of processes is shown. Right-click to turn these columns on and off. Note
that in a normal, single-threaded MPI application, each process has one thread and these two columns
will show identical information.

Hovering the mouse over any function in the Parallel Stack View displays the full path of the
filename, and a list of the process ranks that are at that location in the code:

Procs | Function
2 |:|— main (matrix_mult.cpp:160)
2] ‘calculate<double> (matrix_mult.cpp:55)

11 i"-.-"homer‘cjanuary.-"code.-’ddtfexamples.-’matrix_mult.cpp:SS‘:

6 C___1-mdon this line: 5.1, 6.1
6 - broadcast<MPT::Intracomm, double> (matrix_mult.cpp:20)

L1 =
E S PMPI::Intracomm::Bcast (intracomm_inln.h:59)
1 +

© 2009 Allinea Software 51

Distributed Debugging Tool v2.4

DDT is at its most intuitive when each process group is a collection of processes doing a similar task.
The Parallel Stack View is invaluable in creating and managing these groups. Simply right-click on
any function in the combined call tree and choose the New Group option. This will create a new
process group that contains only the processes sharing that location in code. By default DDT uses the
name of the function for the group, or the name of the function with the file and line number if it's
necessary to distinguish the group further.

2.1 Browsing Source Code

Source code will be automatically displayed — when a process is stopped, when you select a process or
change position in the stack.

DDT highlights lines of the source code to show where your program currently is. Lines that contain
processes from the current group are shaded in that group's colour. Lines only containing processes
from other groups are shaded in grey.

This pattern is repeated in the focus on process and thread modes. For example, when you focus on a
process, DDT highlights lines containing that process in the group colour, and other processes from
that group in grey.

DDT also highlights lines of code that are on the stack — functions that your program will return to
when it has finished executing the current one. These are drawn with a faded look to distinguish them
from the currently-executing lines.

You can hover the mouse over any highlighted line to see which processes/threads are currently on
that line. This information is presented in a variety of ways, depending on the current focus setting:

Focus on Group

A list of groups that are on the selected line, along with the processes in them on this line, and a list of
threads from the current process on the selected line.

Focus on Process

A list of the processes from the current group that are on this line, along with the threads from the
current process on the selected line.

Focus on Thread
A list of threads from the current process on the selected line.

The tooltip distinguishes between processes and threads that are currently executing that line, and ones
that are on the stack by grouping them under the headings “On the stack” and “On this line”.

Variables and Functions

Right-clicking on a variable or function name in the Source Code Viewer will make DDT check
whether there is a matching variable or function, and then display extra information and options in a
sub-menu.

In the case of a variable, the type and value are displayed, along with options to view the variable in

the Cross-Process Comparison Window (CPC) or the Multi-Dimensional Array Viewer (MDA), or to
drop the variable into the Evaluate Window — each of which are described in the next chapter.

© 2009 Allinea Software 52

Distributed Debugging Tool v2.4

MPT_TnitC&argc _&arowi-
o e
Comn_size{MPI_ argc

Add breakpoint for All

sw=; w<my_rank

. Run to here
micArray = mal
ce=07w<10000; =+ Close
dynami carray [Split view

Open file in editor

Add to Evaluations

View Across Processes (CPC)
View Across Threads (CTC)
View Array (MDA)

Type is: int

Value is: 1

1 printf{"my ran

Fig 32: Right-Click Menu — Variable Options

In the case of a function, it is also possible to add a breakpoint in the function, or to the source code of

the function when available.

fungiit-
oo I o cooations

intfl add breakpoint for All View Across Processes (CPC)
ngWat Run to here View Across Threads (CTC)
Close View Array (MDA
t.ano y()
test ik i Type is: void
bein Split view ¥p 0 -
Open file in editor View source funcl "
=

| Watches | Stacks A E] Add breakpoint in funcl

Value is: 0x804c0cf <funcl=>

-

Fig 33: Right-Click Menu — Function Options
2.1 Simultaneously Viewing Multiple Files

DDT presents a tabbed pane view of source files, but occasionally it may be useful to view two files

simultaneously — whilst tracking two different processes for example.

Inside the code viewing panel, right-click to split the view. This will bring a second tabbed pane

which can be viewed beneath the first one. When viewing further files, the currently 'active' panel will
display the file. Click on one of the views to make it active.

The split view can be reset to a single view by right-clicking in the code panel and deselecting the split

view option.

© 2009 Allinea Software

53

Distributed Debugging Tool v2.4

hello.c

" tables kI Tyl = eI (yH)]
MPI_Init{&argc, &argvl:

MPI_Commn_rank{MPI_COMM_WORLD, &ny_rankl;

MPI_Comin_size (MPI_COMM_WORLD, &pl;

for(x=0; w=<mv_rank; =) gqoat[x] = my_rank * x;

dynami cArray = mallocCsizeof{int)*100000); J
For(x=0;x<10000; %+
i

dyvnamicarray (2] = =%10;

printf{"my rank is %diwn", my_rankl;

nrintfE " T am running nn s as %1 Yn" meccane netrnddfthe

printf("sizeof{int) = &dynsizeof (void*) = &dvn", sizeuf[int],_sill
r

3 E]?E f -
PERL: it P .z

beingwWatched = 1; ;I
test.anotherlist.sublist. charstar = "hello";
test.c = 'p';

beingwWatched = 0;
f#owhile (12 £ F %/

if (rgy_rank I= 0 && "p=7 &8 my_rank=311 /% deliberately mism:

sprintfimessage, "Greetings from process %d!", my_rank);
printf{"sending message from (Bdivn".my_rankd;

dest = 0; J
f# llse strlen(messagel+l to include "hwo' =/
MPI_Sendi{message, strlen{messagel+1, MPI_CHAR, dest, tar
beingWatched—;

Y PR

Fig 34: Horizontal Alignment Of Multiple Source Files

2.2 Signal Handling

DDT will stop a process if it encounters one of the standard signals such as

SIGSEGV — Segmentation fault

The process has attempted to access memory that is not valid for that process. Often this will
be caused by reading beyond the bounds of an array, or from a pointer that has not been
allocated yet. The DDT Memory Debugging feature may help to resolve this problem.
SIGFPE - Floating Point Exception

This is raised typically for integer division by zero, or dividing the most negative number by
-1. Whether or not this occurs is Operating System dependent, and not part of the POSIX
standard. Linux platforms will raise this.

Note that floating point division by zero will not necessarily cause this exception to be raised,
behaviour is compiler dependent. The special value Inf or - Inf may be generated for the
data, and the process would not be stopped.

SIGPIPE - Broken Pipe

A broken pipe has been detected whilst writing.

SIGILL —Illegal Instruction

© 2009 Allinea Software 54

Distributed Debugging Tool v2.4

Note that SIGUSR1, SIGUSR2, SIGCHLD, SIG63 and SIG64 are passed directly through to the user
process without being intercepted by DDT.

© 2009 Allinea Software 55

Distributed Debugging Tool v2.4

1 Variables And Data

The Variables Window contains two tabs that provide different ways to list your variables. The Locals
tab contains all the variables for the current stack frame, while the Current Line(s) tab displays all the
variables referenced on the currently selected lines.

Locals | Current Line(s) | Stack |
Variable Name Value =
argc 1

- argv Oxbfa92ac4
~beingWatched 7177107

+ bigArray

- dest 2

~dynamicArray 0xb7eB6008
-environ Oxbfad2c00 LI

Fig 35: Displaying Variables
1.1 Current Line

You can select a single line by clicking on it in the code viewer - or multiple lines by clicking and
dragging. The variables are displayed in a tree view so that user-defined classes or structures can be
expanded to view the variables contained within them. You can drag a variable from this window into
the Evaluate Window; it will then be evaluated in whichever stack frame, thread or process you select.

1.2 Local Variables

The Locals tab contains local variables for the current process's currently active thread and stack
frame.

For Fortran codes the amount of data reported as local can be substantial — as this can include many
global or common block arrays. Should this prove problematic, it is best to conceal this tab
underneath the Current Line(s) tab as this will not then update after ever step.

It is worth noting that variables defined within common blocks may not appear in the local variables
tab with some compilers, this is because they are considered to be global variables when defined in a
common memory space.

1.3 Arbitrary Expressions And Global Variables

= Expression Value
& 80003
0

10012

Fig 36: Evaluating Expressions

Since the global variables and arbitrary expressions do not get displayed with the local variables, you
may wish to use the Current Line(s) tab in the Variables window and click on the line in the Source
Code Viewer containing a reference to the global variable.

© 2009 Allinea Software 56

Distributed Debugging Tool v2.4

Alternatively, the Evaluate panel can be used to view the value of any arbitrary expression. Right-
click on the Evaluate window, click on Add Expression, and type in the expression required in the
current source file language. This value of the expression will be displayed for the current process and
stack/thread, and is updated after every step.

Note: at the time of writing DDT does not apply the usual rules of precedence to logical Fortran
expressions, such as “x .ge. 32 .and. x .le. 45”. For now, please bracket such expressions thoroughly:
“(x .ge. 32) .and. (x .le. 45)”. It is also worth noting that although the Fortran syntax allows you to use
keywords as variable names, DDT will not be able to evaluate such variables on most platforms.
Please contact support@allinea.com if this is a problem for you.

1.4 Help With Fortran Modules

An executable containing Fortran modules presents a special set of problems for developers:

® if there are many modules, each of which contains many procedures and variables (each of
which can have the same name as something else in a separate Fortran module), keeping track
of which name refers to which entity can become difficult

® when the Locals or Current Line(s) tabs (within the Variables window) display one of these
variables, to which Fortran module does the variable belong?

® how do you refer to a particular module variable in the Evaluate window?

® how do you quickly jump to the source code for a particular Fortran module procedure?

To help with this, DDT provides a Fortran Modules tab in the Project Navigator window.

When DDT begins a session, Fortran module membership is automatically found from the information
compiled into the executable. Note that this is not available when using the Sun compiler suite.

A list of Fortran modules found is displayed in a simple tree view within the Fortran Modules tab of
the Project Navigator window.

Each of these modules can be “expanded” (by clicking on the '+' symbol to the left of the module
name) to display the list of member procedures, member variables and the current values of those
member variables.

Clicking on one of the displayed procedure names will cause the Source Code Viewer to jump to that
procedure's location in the source code. In addition, the return-type of the procedure will be displayed
at the bottom of the Fortran Modules tab — Fortran subroutines will have a return-type of VOID ().

Similarly, clicking on one of the displayed variable names will cause the type of that variable to be
displayed at the bottom of the Fortran Modules tab.

A module variable can be drag and dropped into the Evaluate window. Here, all of the usual Evaluate

window functionality applies to the module variable. To help with variable identification in the
Evaluate window, module variable names are prefixed with the Fortran module name and two colons

Right-clicking within the Fortran Modules tab will bring up a context menu. For variables, choices on
this menu will include sending the variable to the Evaluate window, the Multi-Dimensional Array
Viewer and the Cross-Process Comparison Viewer.

Some caveats apply to the information displayed within the Fortran Modules tab:

1. If the underlying debugger does not support the retrieval and manipulation of Fortran module
data, the Fortran Modules tab will not be displayed.

2. If the underlying debugger does support the retrieval and manipulation of Fortran module
data, but the executable does not contain any Fortran modules (or, the Fortran modules debug

© 2009 Allinea Software 57

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

data is not in a format understood by DDT), the Fortran Modules tab will still be displayed.
However, the list of Fortran modules itself will be empty. For example, the GNU Fortran
compilers (g77, gfortran) do not provide Fortran modules debug data in a format understood
by DDT.

3. The display and update of the contents of each of the Fortran modules comes at a small
runtime cost to the performance of DDT (net to the cost of the executable's performance!).
Expanding and displaying only the Fortran modules required, and contracting those Fortran
modules no longer required, will have a direct impact on the performance of your DDT
debugging session.

One limitation of the Fortran Modules tab is that the modules debug data compiled into the executable
does not include any indication of the module USE hierarchy (e.g. if module A USEs module B, the
inherited members of module B are not shown under the data displayed for module A). Consequently,
the Fortran Modules tab shows the module USE hierarchy in a flattened form, one level deep.

1.1 Viewing Array Data

Fortran users may find that it is not possible to view the upper bounds of an array. This is due to a
lack of information from the compiler. In these circumstances DDT will display the array with a size
of 0, or simply <unknown_bounds>. It is still possible to view the contents of the array however
using the Evaluate window to view array (1), array(2), etc. as separate entries.

To tell DDT the size of the array right-click on the array and select the Edit Type... menu option. This
will open a window like the one below. Enter the real type of the array in the New Type box.

Edit Type

Variable: arr

Criginal Type: integer arr(kind=4) (10,*)

MNew Type: |integer arr(kind=4) (10,10)| Reset

OK J Cancel J

Fig 37: Edit Type window

Alternatively the MDA can be used to view the entire array.

1.2 Changing Data Values

In the Evaluate window, the value of an expression may be set by right-clicking and selecting Edit
Value. This will change the value of the expression in the currently selected process.

Note: This depends on the variable existing in the current stack frame and thread.
1.3 Viewing Numbers In Different Bases
When you are viewing an integer numerical expression you may right-click on the value and use the

View As sub menu to change which base the value is displayed in. The View As — Default option
displays the value in its original (default) base.

1.4 Examining Pointers

Pointer contents cannot normally be examined in the Variables window but after dragging them into
the Evaluate window you can right-click and select any of the following new options: View As Vector,
Reference, or Dereference.

© 2009 Allinea Software 58

Distributed Debugging Tool v2.4

If a structure contains another pointer you must drag this pointer onto its own line in the Evaluate
window before you can start Referencing/Dereferencing it.

1.5 Multi-Dimensional Arrays in the Variable View

When viewing a multi-dimensional array in either the Locals, Current Line(s) or Evaluate windows it
is possible to expand the array to view the contents of each cell. In C/C++ the array will expand from
left to right (x,y,z will be seen with the x column first, then under each x cell a y column etc.) whereas
in Fortran the opposite will be seen with arrays being displayed from right to left as you read it (so
x,y,z would have z as the first column with y under each z cell etc.)

] Expression Value

¥
| IS [y IS [S [S R S—
N TR N R

Fig 39: 2D Array In Fortran: type of twodee is integer(3,5)
1.6 Examining Multi-Dimensional Arrays

Large multi-dimensional arrays are not easy to view in a tree structure, so DDT provides a Multi-
Dimensional Array Viewer (the MDA). This allows you to view the results of evaluating expressions
in a table, and also to visualize the results in 3D (see the next section Visualizing Data).

To bring up the Multi-Dimensional Array Viewer, right-click on a variable inside the Source Code,
Locals, Current Line(s) or Evaluate windows - and then choose the View Array (MDA) option. You
can also bring up the MDA directly by selecting View from the menu bar and picking Multi-
Dimensional Array Viewer.

© 2009 Allinea Software 59

Distributed Debugging Tool v2.4

DDT - Multi-Dimensional Array Viewer

Array Expression: |myArray[Si][Sj][Sk] j

Range of i ——————— ~ Range of §§ ———————— Range of sk
[~ Auto-update

o
AL

From: IO 3: From: IO 3: From:
To: |9 3: To: 99 = To: 99 Evaluate

Display: IAggregate vl Display: IRows vl Display: ICqumns vl
Aggregate Function: IA\.rerage vl

|

I~ FEilter: I: j I
Data Table I Statistics |
0 |1 | 2 |3 |4 | s | 6 | 7 | s | o [10 [11 |12 =
0 5.5 1) 165 22| 275 33 385 44| 495 55 60.5 66/ 715 :I
1 11 22 33 44 55 66 77 88 99 110 121 132 143
2 16.5 33 495 66 825 99 1155 132 1485 165 181.5 198 2145
3 22 a4 66 88 110 132 154 176 198 220 242 264 286
4 275 55/ 825 110 1375 165 192.5 220 2475 275 302.5 330 3575
5 33 66 99 132 165 198 231 264 297 330 363 396 429
6 38.5 77/ 1155 154 1925 231 269.5 308 3465 385 423.5 462 500.5
7 a4 es| 132 176 220 264 308 352 396 440 484 528 572
8 49.5 99| 1485 198 247.5 297 3465 396 4455 495 544.5 594 6435
9 55/ 110 165 220 275 330 385 440 495 550 605 660 715
10 60.5| 121 181.5 242 302.5 363 423.5 484 5445 605 665.5 726 786.5
R I Ll_l

Expression "myArray[$i1[$jl[Sk]" evaluated for process 0 at 09:43.

Visualize in 3D | Export to Spreadsheet...l Close |

Fig 40: Multi-Dimensional Array Viewer

1.6.1 Expression

At the top of the MDA are controls allowing you to change the expression, and the range over which it
is to be evaluated. You can view the whole array or any slice of data by entering an expression
involving i, j, k, etc. (e.g. A($1i, $j, $k) in Fortran, or myArray[$i][$]j][$k] in C/C++).

If you brought up the MDA by right clicking on a variable, it will automatically set the expression and
ranges based on the type of the variable or array in question, but these default values can be modified.

1.6.2 Dimensions

DDT will create controls for each of the dimensions you enter in the expression. These controls allow
you to specify the minimum and maximum indices (inclusive) for a particular dimension in the
expression. You can also specify whether you want to plot the dimension horizontally (Columns) or
vertically (Rows). Alternatively, the Aggregate option allows you to calculate the Sum, Product,
Average, etc. over the dimension.

1.6.3 Aggregate Function

If you have selected the Aggregate option for one or more dimensions you need to specify the
Aggregate Function, i.e. the function that will be applied to each set of values in the dimension.

1.6.4 Filter

You can choose to show only the values that meet a particular criterion. To enable this feature make
sure the Filter check box is checked. Select an operator from the drop down list and finally a value for
comparison.

© 2009 Allinea Software 60

Distributed Debugging Tool v2.4

1.6.5 Results
Click the Evaluate button to populate the results table. Note: you may click the Cancel button to
cancel the evaluation before it finishes.

You may scroll around the table using the horizontal and vertical scroll bars. When you scroll to a new
position DDT will retrieve the values for that part of the table.

1.6.6 Statistics

The Statistics tab displays information which may be of interest, such as the range of the values in the
table, and the number of special numerical values, such as nan or inf.

1.6.7 Export

You may export the contents of the results table to a file in the Comma Separated Values (CSV)
format that can be plotted or analysed in your favourite spreadsheet program.

1.6.8 Visualisation

If your system is OpenGL-capable then a 2-D slice of an array, or table of expressions, may be
displayed as a surface in 3-D space through the Multi-Dimensional Array (MDA) Viewer. You can
only plot one or two dimensions at a time — if your table has more than two dimensions the Visualise
button will be disabled. After filling the table of the MDA Viewer with values (see previous section),
click Visualise to open a 3-D view of the surface. To display surfaces from two or more different
processes on the same plot simply select another process in the main process group window and click
Evaluate in the MDA window, and when the values are ready, click Visualize again. The surfaces
displayed on the graph may be hidden and shown using the checkboxes on the right-hand side of the
window.

The graph may be moved and rotated using the mouse and a number of extra options are available
from the window toolbar.

The mouse controls are:
® Hold down the left button and drag the mouse to rotate the graph.

® Hold down the right button to zoom - drag the mouse forwards to zoom in and backwards to
zoom out.

® Hold the middle button and drag the mouse to move the graph.

Please note: DDT requires OpenGL to runIf your machine does not have hardware OpenGL support,
software emulation libraries such as MesaGL are also supported.

© 2009 Allinea Software 61

Distributed Debugging Tool v2.4

Fig 41 : DDT Visualization

The toolbar and menu offer options to configure lighting and other effects, including the ability to save
an image of the surface as it currently appears. There is even a stereo vision mode that works with
red-blue glasses to give a convincing impression of depth and form. Contact Allinea if you need to get
hold of some 3D glasses.

1.6.1 Auto Update

If you check the Auto Update check box the results table will be automatically updated as you switch
between processes/threads and step through the code.

Note: you cannot use the Export or Visualise options while the Auto Update option is enabled.

1.7 Cross-Process and Cross-Thread Comparison

The Cross-Process Comparison and Cross-Thread Comparison windows can be used to analyze
expressions calculated on each of the processes in the current process group. Each window displays
information in three ways: raw comparison, statistically, and graphically.

© 2009 Allinea Software 62

Distributed Debugging Tool v2.4

To compare values across processes or threads, right-click on a variable inside the Source Code,
Locals, Current Line(s) or Evaluate windows and then choose one of the View Across Processes
(CPC) or View Across Threads (CTC) options. You can also bring up the CPC or CTC directly from
the View menu in the main menu bar.

Cgmpare dCross:

¥ iProcesses in current group (All, 4 proc5)§

¢ Threads in current process (Process 0, with 1 thread)

Expression: |my_rank

Compare I

[Array mode - evaluate for i, from I

™ Limit comparison to I 3: s.f.

Compare Igtatistics |Visua|ige |

i’tol

ry . .
= inclusive

¥ Align stack frames

Processes

|Va|ue

0

1
2
3

0

1
2
3

| Create Groupsl

Close |

4

Fig 42: Cross-Process Comparison — Compare View

You can also switch between viewing across processes in the current group and viewing across threads
in the current process from within either window.

Processes and threads are grouped by expression value when using the raw comparison. The precision
of this grouping can be specified (for floating point values) by filling the Limit box. It is also practical
to compare complete arrays, or sections of them, by parameterising the expression using 1 as the
parameter.

If you are comparing across processes, you can turn each of these groupings of processes into a DDT
process group by clicking the create groups button. This will create several process groups — one for
each line in the panel. Using this capability large process groups can be managed with simple
expressions to create groups. These expressions are any valid expression in the present language (i.e.
C/C++/Fortran).

The Align Stack Frames checkbox automatically tries to make sure all processes and threads are in the
same stack frame when comparing the variable value. This is very helpful for most programs, but you
may wish to disable it if different processes/threads run entirely different programs.

The Use as MPI Rank button is described in the next section, Assigning MPI Ranks.

The statistical view shows maximum, minimum, variance and similar with a box-and-whisker plot
which displays max, min and interquartile range graphically.

© 2009 Allinea Software 63

Distributed Debugging Tool v2.4

The graphical panel shows a plot of values. In the case of a 1-D array expression the plot of values
will display a line graph of values for all processes and these can be turned on and off individually by
clicking the appropriate checkbox.

Cgmpare dCross:

¥ iProcesses in current group (All, 4 proc5)§

" Threads in current process (Process 0, with 1 thread)

Expression: |my_rank Compare I

[Array mode - evaluate for i, from I i’ to I i’ inclusive

™ Limit comparison to I 3: s.f. ¥ Align stack frames

Compare | Statistics |Visua|ige |

Comparison of a single value

© =l IR
L T | R i
§§ R | s RCRCEETECEEPPTEERREPErE
B @ 15 [T s
2_2‘1 --
6 0.5 oo e
o 0o T gy
| T T |
0 1 2 3

Fig 43: Cross-Process Comparison — Visualize View

1.8 Assighing MPI Ranks

Sometimes, DDT cannot detect the MPI rank for each of your processes. This might be because you
are using an experimental MPI version, or because you have attached to a running program, or only
part of a running program. Whatever the reason, it is easy to tell DDT what each process should be
called.

To begin, choose a variable that holds the MPI world rank for each process, or an expression that
calculates it. Use the Cross-Process Comparison window to evaluate the expression across all the
processes. If the variable is valid, the Use as MPI Rank button will be enabled. Click on it; DDT will
immediately relabel all its processes with these new values.

What makes a variable or expression valid? These criteria must be met:

1. It must be an integer
2. Every process must have a unique number afterwards

These are the only restrictions. As you can see, there is no need to use the MPI rank if you have an
alternate numbering scheme that makes more sense in your application. In fact you can relabel only a
few of the processes and not all, if you prefer, so long as afterwards every process still has a unique
number.

© 2009 Allinea Software 64

1.1 Viewing Registers

Distributed Debugging Tool v2.4

To view the values of machine registers on the currently selected process, select the Registers window
from the View pull-down menu. These values will be updated after each instruction, change in thread

or change in stack frame.

Registers:

Register
- eax

- BCK
~adx
~ebx
—esp
~ebp
=1

- edi
—eip
-eflags
-5
55
~ds
B85
~fs

~gs

© 2009 Allinea Software

Value

0x00

0x809b41c 134853660
Oxbfdd9630 -1075997136
Oxb 11

Oxbfdcf630 Oxbfdcfe30
Oxbfdd9618 0xbfdd9618
Oxbaacch 6991040

0x00

0x804cl1f0 0x804clf0 <main+207 >
0x200286 2097798

0x73 115

0x7b 123

0x7b 123

0x7b 123

0x00

0x33 51

Fig 44: Register View

65

Distributed Debugging Tool v2.4

1.2 Interacting Directly With The Debugger

Send Commandl j

TargetGroupIAII 'I Clear | Send |

Command sent to All: bt

Output for IProcess 0 v|

+
i
1
1
]
i
1
]
i
1
1
1
]
i
1
1
1
]
i
1
]
i

|»

87

88 MPL_Init(&argc, &argv);

89 MPIL_Comm_rank({MPL_COMM_WORLD, &my_rank);
90 MPI_Comm_size(MPI_COMM_WORLD, &p):

91

92 for(x=0; x<my_rank; x++) goat[x] = my_rank * x;
93

94 dynamicArray = malloc(sizeof(int)*100000};

95 for{x=0;x< 10000;x++)

96 {

#0 main (argc=1, argv=0xbfe476b4, environ=0xbfe476d4)
at /var/nick/code/ddt/examples/hello.c:92 —

||

Fig 45: Raw Command Window

DDT provides a Raw Command window that will allow you to send commands directly to the
debugger interface. This window bypasses DDT and its book-keeping - if you set a breakpoint here,
DDT will not list this in the breakpoint list, for example.

Be careful with this window; we recommend you only use it where the graphical interface does not
provide the information or control you require. Sending commands such as quit or kill may cause
the interface to stop responding to DDT.

Each command is sent to a group of processes (selected from within the window box - not necessarily
the current group). To communicate with a single process, create a new group and drag that process

into it.

The Raw Command window will not work with running processes and requires all processes in the
chosen group to be paused.

© 2009 Allinea Software 66

Distributed Debugging Tool v2.4

2 Program Input And Output

DDT collects and displays output from all processes under the Input/Output tab. Both standard output
and error are shown, although on most MPI implementations, error is not buffered but output is and
consequently can be delayed.

2.1 Viewing Standard Output And Error

| Input/Output | Breakpoints | Watches | Stacks
Currently Displaying: All -

Other: sending message from (3) -]
Other: I can write to stderr too

Other: Greetings from process 1!

Other: waiting for message from (2)

Other: | can write to stderr too

Other: sending message from (1)

Other: sending message from (2)

Other: Greetings from process 2|

Other: waiting for message from (3)]
Mthar Grootinae fram nrmneace 30 LJ
< +

Mote: DDT can only send input to process zero with this MPI

Process Output

Type here (Enter to send): :J

Fig 46: Standard Output Window
The Input/Output tab is at the bottom of the screen (by default).

The output may be selected and copied to the X-clipboard.

2.2 Displaying Selected Processes
By right-clicking the mouse you can choose whether to view output for the current process, the current
process group if no process is selected, or for all processes. You also have the option to copy a

selection to the clipboard.

MPI users should note that most MPI implementations place their own restrictions on program output.
Some buffer it all until MPI_Finalize is called, others may ignore it or send it all through to one
process. If your program needs to emit output as it runs, Allinea suggest writing to a file.

All users should note that many systems buffer stdout but not stderr. If you do not see your
stdout appearing immediately, try adding an fflush(stdout) or equivalent to your code.

2.3 Saving Output

By right-clicking on the text it is possible to save it to a file.

2.4 Sending Standard Input (DDT-MP)

DDT provides an Input File box in the Run window. Using this box you may select the file you wish

to use as the input file. DDT will automatically insert the correct arguments to your MPI
implementation to cause your file to be piped into your MPI job.

© 2009 Allinea Software 67

Distributed Debugging Tool v2.4

Alternatively in DDT you may enter the arguments directly in the MPIRun Arguments box. For
example if using MPI directly from the command-line you would normally use an option to the mpirun
such as -stdin filename, then you may add the same options to the MPIRun Arguments box
when starting your DDT session in the Run window Advanced options.

It is also possible to enter input from the keyboard instead of from a file. Using this mode you would
start your program as normal, then run to the point where your program executes its scanf function

or similar. You should then change to the Input/Output tab and type in the input you wish to send, the
program will then continue executing.

B Input/Cutput | Breakpoints (Process 0) | Watches = Stacks (Process 0)

Process 0: Enter value of x:
Process 0: 10

Process 0: Enter value of y:
Process 0: 8

Process 0: Enter value of z:
Process 0: 5

Process 0: This is some error output
Process 0: Value of x is: 10
Process 0: Value of y is: 8

Process 0: Valueof z is: 5

Process 0: Calculated value of ¢ is: 23

Process Output

Type here (Enter to send): &5 ;]

Fig 47: Sending Input

Note: If DDT is running on a fork-based system such as Scyld, or a -comm=shared compiled MPICH, your

program may not receive an EOF correctly from the input file. If your program seems to hang while waiting for
the last line or byte of input, this is likely to be the problem. See the FAQ or contact Allinea for a list of possible
fixes.

© 2009 Allinea Software 68

Distributed Debugging Tool v2.4

3 Message Queues

DDT's Message Queue debugging feature shows the status of the internal message buffers of MPI —
for example showing the messages that have been sent by a process but not yet received by the target.
This capability relies on the MPI implementation supporting this via a debugging support library: the
majority of MPIs do this.

You can use DDT to detect common errors such as deadlock — where all processes are waiting for
each other, or for detecting when messages are present that are unexpected, which can correspond to
two processes disagreeing about the state of progress through a program.

3.1 Viewing The Message Queues
Open the Message Queues window by selecting Message Queues from the View menu.

When the window appears you can click Update to get the current queue information. Please note that
this will stop all running processes. While DDT is gathering the data a window box will be displayed
and you can cancel the request at any time.

DDT will usually automatically debug message queues with the minimum of effort by the user - it will
try to load the support library for the MPI implementation (provided one exists). If it fails, an error
message will be shown.

If an error is shown then the library may not exist, and you will need to compile the debug interface
for your MPI implementation. In MPICH this is done by using --enable-debug when running
configure. LAM and OpenMPI 1.2.4 automatically compile the library.

It could also be necessary to specifically include the path to the support library in the
LD_LIBRARY_PATH, or if this is not convenient you can set the environment variable,
DDT_QUEUE_DLL, to the absolute pathname of the library itself (e.g. /usr/local/mpich-
1.2.7/1ib/1ibtvmpich. so).

© 2009 Allinea Software 69

Distributed Debugging Tool v2.4

3.2 Interpreting the Message Queues

DD Message Quele

rSelect messages to show —

@ M Receive

M Unexpected

rSelect communicator

MPI_COMM_WORLD
MPI_COMM_WORLD_colle
MPI_COMM_SELF

MPI_COMM_SELF_collectiy

2l

rRanks

" Show local ranks

& Show global ranks

| Update

™ Show queues in table

Fig 48: Message Queue Window

To see the messages, you must select a communicator to see the messages in that group. The ranks
displayed in the diagram are the ranks within the communicator (not MPI__COMM_WORLD), if the
“Show Local Ranks” option is selected. To see the “usual” ranks, select “Show Global Ranks”.

There are three different types of message queues about which there is information. Different colours
are used to display messages from each type of queue.

Label Description

Send Queue Calls to MPT's send functions that have not yet completed.

Receive Queue Calls to MPT's receive functions that have not yet completed.

Unexpected Message Queue Represents messages received by the system but the
corresponding receive function call has not yet been made.

Messages in the “Send” and “Unexpected” queue are shown with the arrow pointing to the destination
of the message — and in the “Receive” queue the arrow points to the source (ie. the process from which

the message is coming).

Please note that the quality of underlying implementations of the message queue debugging interface
varies considerably — some of the data can therefore be incomplete.

3.3 Deadlock

If you see a loop in the graph, it can be because of deadlock — every process waiting to receive from
the preceding process in the loop. If your communications are of the synchronous variety (eg.
MPI_Ssend) then this is invariably a problem. For other types of communication it can be the case
(eg. with MPI_Send) that, for example, messages are “in the ether” or on some O/S buffer and the
send part of the communication is complete but the receive hasn't started. If playing all processes, and

© 2009 Allinea Software 70

Distributed Debugging Tool v2.4

interrupting them again, followed by clicking “Update” to refresh the message queue diagram leads to
the same loop then it is more likely to be deadlock.

If you experience problems connecting to the message queue library when attaching to a process see
the FAQ for possible solutions.

© 2009 Allinea Software 71

Distributed Debugging Tool v2.4

4 Memory Debugging

DDT has powerful parallel memory debugging capabilities. At the back end, DDT interfaces with a
modified version of the dmalloc library. This powerful, cross-platform library intercepts memory
allocation and deallocation calls and performs lots of complex heap- and bounds- checking. DDT
makes it easy to use, even across tens or hundreds of parallel processes.

4.1 Configuration

To enable memory debugging within DDT, from the Run window click on the Advanced button to
display the Memory Debugging options. You can turn memory debugging on and off with the Enable
Memory Debugging checkbox. Next to this box is a Memory Debugging Settings button. Click on
this to open the Memory Debugging Options window, shown here:

¥ Preload the memory debugging library: Language: ICfFor‘tran, no threads j

Note: Preloading only works for programs linked against shared libraries. If your
program is statically linked, you must relink it against the dmalloc library
manually.

— Heap Debugging
* None (fewest tests, picks up invalid pointers passed to memory functions)
" Runtime (fast, basic tests including fence-post checking, null handling)

" Low (adds minimal heap checking, overwriting of allocated/freed space)
" Medium (adds full heap checking, always relocates block on realloc)

" High (adds checking for arguments to common functions)

" Custom: I

— Heap Owerflow/Underflow Detection
I Add guard pages to detect out of bounds heap access

I

— Advanced

™ Specify heap-check interval: I 3:

oK Cancel

Fig 49: Memory Debugging Options

To use memory debugging with DDT you only need to understand the two controls at the top:

1. Preload the memory debugging library - when this is checked, DDT will automatically load the
memory debugging library. This is usually the most appropriate setting. If you have linked against
one of DDT's memory debugging libraries yourself then you can deselect this option. DDT can
only preload the memory debugging library when you start a program through DDT and if it uses
shared libraries . It is not possible to preload for statically-linked programs. You will have to re-
link your program with the appropriate dmalloc library in ddt/1ib/32 or ddt/1ib/64 before
running in DDT. If you attach to a running process, this setting has no effect. You can still use

© 2009 Allinea Software 72

Distributed Debugging Tool v2.4

memory debugging when you attach, but you will have to manually link your program against one
of the 1ibdmalloc* . so versions in one of DDT's 1ib/32 and 1ib/64 directories and set the
DMALLOC_OPTIONS environment variable before running your program.

2. The box showing C/Fortran, No Threads in the screenshot — click here and select an option that
matches your program, be it C/Fortran, C++, Single-Threaded, Multi-Threaded, you should know
what this means. Remember to come back here if you start/stop using multi-threading/OpenMP or
change between debugging C/Fortran and C++ programs. Many people find they can leave this set
to C++/Threaded for all their programs, rather than keep on changing the setting.

The Heap Debugging section allows you to turn on/off specific memory debugging features. The two
most important things to remember are:

1. Even None will catch trivial memory errors such as deallocating memory twice. Selecting this
option does NOT turn off memory debugging!

2. The further down the list you go, the more slowly your program will execute. We find that for
general use, anything up to Low is fast enough to use and will catch almost all errors. If you
come across a memory error that's difficult to pin down, choosing a higher setting might
expose the problem earlier, but you'll need to be very patient on large, memory intensive
codes!

You can turn on Heap Overflow/Underflow Detection to detect out of bounds heap access. See section
4.1.4 Writing Beyond An Allocated Area for more details.

Almost all users can leave the heap check interval at its default setting. It determines how often the
memory debugging library will check the entire heap for consistency. This is a slow operation, so is
normally performed every 100 memory allocations. This figure can be changed manually — a higher
setting (1000 or above) is recommended if your program allocates and deallocates memory very
frequently (e.g. inside a computation loop).

Click on OK to save these settings, or Cancel to undo your changes.

Note: Choosing the wrong library to preload or the wrong number of bits may prevent DDT from starting your
job, or may make memory debugging unreliable. These settings should be the first place you check if you
experience problems when memory debugging is enabled.

Note: On some systems the glibc library backtrace function, used internally in the memory debugger, can
cause an abort/error. This is more likely with optimised code, and some compilers and compiler options are
more susceptible than others. If DDT informs you that your program has stopped in abort and the stack is
shown to be inside backtrace() you should add stack-depth=0 to the Custom option box. This option
will disable the stack recording feature used to show the allocation details for pointers in the memory debugging
windows, but other memory debugging functionality will remain unchanged.

4.1 Feature Overview

Once you have enabled memory debugging and started debugging, several new features become
available. We will cover each of them in turn.

© 2009 Allinea Software 73

Distributed Debugging Tool v2.4

4.1.1 Error reporting

If the memory debugging library reports an error DDT will display a dialog similar to the one shown
below. This briefly reports the type of error detected and gives the option of continuing to run the
program, or pausing execution.

& Process 1:

Memory error detected: cannot locate pointer in heap
Tip: Use the stack list and the local variables to explore your program's current state and identify the source of the error.

[Continue

Fig 50: Memory Error Message

If you choose to pause the program then DDT will highlight the line of your code that was being
executed when the error was reported. Often this is enough to debug simple memory errors, such as
freeing or dereferencing an unallocated variable, iterating past the end of an array and so on. If it is
not clear, you may find yourself checking some of the variables and pointers referenced to see whether
they're valid and which line they were allocated on, which brings us to:

4.1.2 Check Validity

Any of the variables or expressions in the Evaluate window can be right-clicked on to bring up a
menu. If memory debugging is enabled, one option will be Check pointer Is Valid. Clicking on this
will pop up a message telling you whether or not that expression points to memory that was allocated
on the heap or not":

\i,) The expression points to invalid memory or memory that was not allocated on the heap.

Fig 51: Invalid memory message

This is particularly useful for checking function arguments, and key variables when things seem to be
going awry. Of course, just because memory is valid doesn't mean it is the same type as you were
expecting, or of the same size, or the same dimensions and so on. To help you discover this we take
you back to the place the memory was first allocated with our next feature:

! Memory allocated on the heap refers to something returned by malloc, ALLOCATE, new and so on. A
pointer may also point to a local variable, in which case DDT will tell you it does not point to data on the
heap. This can be useful, since a common error is taking a pointer to a local variable that later goes out of
scope.

© 2009 Allinea Software 74

Distributed Debugging Tool v2.4

4.1.3 View Pointer Details

Just next to the Check Validity option on the menu is View Pointer Details. DDT will show you the
amount of memory allocated to the pointer and which part of your code originally allocated that
memory:

BP Fointer Deta

Pointer: global_string
Size: 10 bytes

This pointer was allocated at:

Stack frame |
#0 main.c:59 (0x804c114 - func2)
#1 main.c:154 (0x804c42e - main)

Clicking on one of the above lines will jump to that location in
your code

V.

Fig 52: Pointer details

Clicking on any of the stack frames will display the relevant section of your code, so you can see
where you allocated the variable in the first place. Should you want to check dynamic values at the
time of allocation, you can now place a breakpoint here and use the Restart Session function to re-run
the program from the start while keeping your breakpoints, evaluated expressions and so on.

4.1.4 Writing Beyond An Allocated Area

Use Heap Overflow/Underflow Detection option to detect read or writes beyond or before an allocated
block. Any attempts to read or write to the specified number of pages before or after the block will
cause a segmentation violation that stops your program. Add the guard pages after the block to detect
heap overflows, or before to detect heap underflows. The default value of 1 page will catch most heap
overflow errors but if this doesn’t work a good rule of thumb is to set the number of guard pages
according to the size of a row in your largest array. The exact size of a memory page depends on your
operating system but a typical size is 4Kb. So if a row of your largest array is 64Kb then set the
number of pages to 64/4 = 16.

Some system architectures do not allow unaligned memory accesses. If you are running DDT on an
Itanium- or SPARC-based machine, you may find that your program stops with SIGBUS errors when
Heap Overflow Detection is turned on. Unfortunately, Heap Overflow Detection cannot be supported
on these platforms. However, 'Fence Post' checking (see below) is still available.

DDT will also perform 'Fence Post' checking even if this option is disabled, as long as the Heap
Debugging settings are Runtime or above. In this mode, an extra portion of memory is allocated at the
start and/or end of your allocated block, and a pattern is written into this area. If you attempt to write
beyond your data, say by a few elements, then this will be noticed by DDT, however your program
will not be stopped at the exact location at which your program wrote beyond the allocated data — it
will only stop at the next heap consistency check.

4.1.5 Current Memory Usage

Of course, another problem of memory management is in memory leaks. If the size of your program
grows faster than you expect, you may well be allocating memory and not freeing it when it's finished
with. Such problems are typically difficult to diagnose, fiendishly so in a parallel environment, but
DDT makes it trivial for us all. At any point in your program you can go to View — Current Memory

© 2009 Allinea Software 75

Distributed Debugging Tool v2.4

Usage and DDT will display a screenful of information about the currently allocated memory in your
program for the currently selected group:

Memory Usage for "All" group (12:34:51)

Restrict to the top (8 || processes

Graphical View| Table View‘

Total Across Processes (in Bytes) Current Usage Across Processes (in Bytes)

550,000 5
Legend
. Process 11

Process 3 450,000
Process 19
178 Process 7 400,000
Process 15
= Process 23 30,000
Legend
Process 31 300,000 compute (leaks.c:18)
- . setup (leaks.c:11)
Allocation Details 250,000 compute (leaks.c:20)
=il ptr from setup (leaks.c:11) i 200000 setup (leaks.c:13)
-Ptr: O0x2aaaaca21800, size: 10240 ’ setup (leaks.c:12)
150,000 ‘Other allccations (bytes)

100,000

50,000

Fig 53: Memory Usage Graphs

The pie chart gives an at-a-glance comparison of the total memory allocated to each process. This
gives a good indication of the balance of memory allocations; any one process taking an unusually
large amount of memory is usually easily visible here.

The stacked bar chart on the right is where the most interesting information starts. Each process is
represented by a bar, and each bar broken down into blocks of colour that represent the cumulative
size of each allocation. Let's break that down a bit. Say your program contains a loop that allocates a
hundred bytes that is never freed. That's not a lot of memory. But if that loop is executed ten million
times, you're looking at a gigabyte of memory being leaked! This chart groups memory allocations by
the return address. For practical purposes, this means that each block of colour represents the total
memory currently allocated from a particular line of code. There are 6 blocks in total. The first 5
represent the 5 lines of code with the most memory allocated, and the 6th (at the top) represents the
rest of the allocated memory, wherever it is from.

As you can see, large allocations (if your program is close to the end, or these grow, then they are
severe memory leaks) show up as large blocks of colour. Typically, if the memory leak does not make
it into the top 5 allocations under any circumstances then it isn't that big a deal — although if you are
still concerned you can view the data in the Table View yourself.

If any block of colour interests you, click on it. This will display detailed information about the
memory allocations that make it up in the bottom-left pane. Scanning down this list gives you a good
idea of what size allocations were made, how many and where from. Clicking on any one of these
will display the 'Pointer Details' view described above, showing you exactly where that pointer was
allocated from in your code.

Some compilers wrap memory allocations inside many other functions. In this case DDT may find,
for example, that all Fortran 90 allocations are inside the same routine. This can also happen if you
have written your own wrapper for memory allocation functions. In these circumstances you will see
one large block in the main view and will have to click on it to see the list of the memory allocations
inside it. You can expect to see a smarter way around this in future versions!

Another valuable use of this window is to run the program for a while, refresh the window, run it for a
bit longer, refresh the window and so on — if you pick the points at which to refresh (e.g. after units of

© 2009 Allinea Software 76

Distributed Debugging Tool v2.4
work are complete) you can watch as the memory load of the different processes in your job fluctuates
and will easily spot any areas that grow and grow — these are problematic leaks.

Naturally it occurs to you that some of this information is of interest for balance and other purposes.
DDT goes one step further and provides you with our next feature:

4.1.6 Memory Statistics

The menu option View — Memory Statistics displays a window like this one:

Memory Statistics for "All" group (12:39:02)

Graph View| Table View|

Bestrict to the top processes
Total Bytes| Total Calls| Current|

Total bytes allocated/freed

650,000

i Legend
250,000 — I total aliocated bytes

Process 0 Process 11 Process 3 Process 19 Process 7 Process 15 Process 23 Process 31

Fig 54: Memory Statistics

Again, this is filtered by the currently-selected process group. The contents and location of the
memory allocations themselves are not repeated here; instead this window displays the total amount of
memory allocated/freed since the program began in the left-hand pane. This can help show if your
application is unbalanced, if particular processes are allocating or failing to free memory and so on.
The right hand pane shows the total number of calls to allocate/free functions by process. At the end
of program execution you can usually expect the total number of calls per process to be similar
(depending on how your program divides up work), and memory allocation calls should always be
greater than deallocation calls - anything else indicates serious problems!

© 2009 Allinea Software 77

Distributed Debugging Tool v2.4

5 Checkpointing
5.1 What Is Checkpointing?

A program's entire state (or a practical subset thereof) may be recorded to disk/memory as a
checkpoint. The program may later be restored from the checkpoint and will resume execution from
the recorded state.

Sometimes you are not sure what information you need to diagnose a bug until it is too late to get it.
For example, a program may crash because a variable has a particular unexpected value. You want to
know where the variable was set to that value but it is too late to set a watch on it. However if you
have an earlier checkpoint of the program you can restore the checkpoint, set the watch, and then let it
fail again.

5.2 Checkpoint Support In DDT

DDT supports two types of checkpointing:

e Run-time checkpoints are stored in memory. They are valid for the life time of a session but
are lost when the session is ended.

e Persistent checkpoints are stored on disk. When you restore a persistent checkpoint DDT will
start a new session.

DDT 2.4 includes three checkpoint providers:

e The gdb checkpoint provider is available on all Linux platforms. It supports run-time
checkpoints only. It has no special support for MPI programs so restoring a checkpoint across
an MPI function call may fail. It does not support threads and will fail if your program is
linked with a threading library (e.g. libpthread), even if your program is only using one thread
at the time of the checkpoint.

e The BLCR checkpoint provider support persistent checkpoints for single process programs
using the Berkley Lab Checkpoint/Restart library. Your program must be linked with the
BLCR library. See section 4.2 Making an application checkpointable of the BLCR user guide.
Note: if you restart a BLCR checkpoint made in DDT at the command line the process(es) will
be stopped (as if they had been sent SIGSTOP). Pass the - -cont option to cr_restart to
avoid this.

@ The experimental OpenMPI checkpoint provider supports persistent checkpoints and has
explicit MPI support. To work with DDT the ompi-checkpoint and ompi-restart
commands must support the -prd argument. You must pass some arguments to mpirun
before you can checkpoint your OpenMPI program in DDT. Click the Advanced >> button in
the Run window then add the arguments below to the MPIRun Arguments box:

-am ft-enable-cr -gmca opal_cr_enable_prd 1

5.1 How To Checkpoint

To checkpoint your program, click the Checkpoint button on the tool bar KA. The first time you click
the button you will be asked to select a checkpoint provider. If no checkpoint providers support the
current MPI and debugger an error message will be displayed instead. See the previous section for a
list of available checkpoint providers in DDT.

When the checkpoint has completed a new window will open displaying the name of the new
checkpoint.

© 2009 Allinea Software 78

Distributed Debugging Tool v2.4

5.2 Restoring A Run-time Checkpoint

To restore a run-time checkpoint, click the Restore Checkpoint button on the tool bar 7). A new
window will open with a list of available checkpoints. Select a checkpoint then click the Ok button.

The program state will be restored to the checkpoint. The Parallel Stack View, Locals View, etc. will
all be updated with the new program state.

You may also restore a permanent checkpoint in the same way, however this will require a session
restart and you will be warned accordingly.

5.3 Restoring A Persistent Checkpoint

To restore a persistent checkpoint, click the Restore Checkpoint button on the Welcome screen or
select the Restore Checkpoint menu item from the Session menu. The Restore Checkpoint window will
open.

Restore Checkpoint

Executable: /homefuser/program/. a_out| (=

Available Checkpoints:

context. 12701 Fri Dec 5 13:13:03 2008 (BLCR)
context. 17562 Fri Dec 5 14:08:12 2008 (BLCR)
context. 17611 Fri Dec 5 14:08:11 2008 (BLCR)
context. 17845 Fri Dec 5 14:11:38 2008 (BLCR)
context.6518 Fri Dec 5 11:17:01 2008 (ELCR)

Load From File...

OK Cancel

You can select from a list of checkpoints automatically discovered by DDT. You may also choose to
load a checkpoint from a file if the checkpoint you want to restore is not listed.

Once you have selected a checkpoint click the Ok button. DDT will start a new session, restoring your
program from your selected checkpoint.

© 2009 Allinea Software 79

Distributed Debugging Tool v2.4

6 Advanced Data Display and C++ STL Support

With the DDT Wizard facility, DDT can take advantage of a user-provided shared-library (a.k.a.
'Wizard Library') to customise debugging behaviour. A Wizard Library can be used by DDT to
improve the display of data structures (Evaluate Expressions) which are difficult to automatically
navigate without specialist domain knowledge.

An example where this would be useful is for the display of C++ data structures which are templates,
or involve inheritance (e.g. the C++ Standard Library container classes, the Trolltech Qt library, etc.).
The interface is not specific to C++ and as such other languages, such as C, can work with the
provided API.

DDT comes with a sample Wizard Library for the following C++ Standard Library classes:

« vector

« deque

« list

e pair

« set

« multiset

+ map

« multimap
« string

Please note that if your compiler version differs from that which is standard with the DDT installation,
you may need to recompile the wizard library. Source and the makefile are provided for this purpose
with the DDT installation.

6.1 Using The Sample Wizard Library
The sample Wizard Library works with target programs compiled with GNU GCC.
To use the sample Wizard Library, send a variable to the Evaluate window. Either:

e select a line in the Source Code Viewer, right-click the mouse whilst the cursor is over the
variable and choose the Add To Evaluations option, or

e select a line in the Source Code Viewer, select the variable in the Current Line(s) window and
drag it into the Evaluate window, or

e select the variable in the Locals window and drag it into the Evaluate window

Once in the Evaluate window, select the variable and right-click the mouse. From the pop-up menu
that appears, select the Evaluate with Wizard option.

This should lead to a re-display of the value of the variable, this time evaluated by the Wizard Library
rather than by DDT itself.

To re-display the value of the variable as it was before the Wizard Library was used, right-click the
variable again and select Evaluate without Wizard from the pop-up menu.

As an example, suppose a C++ program contained the following code:

string s = “hello world”;

Without evaluation by the Wizard Library, the Evaluate window displays something like the
following:

© 2009 Allinea Software 80

Distributed Debugging Tool v2.4

Expression Value

ig
é-"static npos 4294957295
i-_M_datapIus

Fig 55: Evaluating Without Wizard
After evaluation with the Wizard Library, the display changes to the following:

=]

Expression Value
hig :0x9df6024 "hello world"

Fig 56: Evaluating With Wizard
6.1 Writing A Custom Wizard Library

Full source code for the sample Wizard Library is included with the DDT distribution. However, that
is in excess of 1400 lines of code and comments. To explain how to write your own, the following
sections will cover writing a small example Wizard Library that works just for the C++ Standard
Library string class.

6.1.1 Theory Of Operation

A Wizard Library must support the following interface:
typedef VirtualProcess*(*CurrentFun)();
extern "C"
{

void* initialize(CurrentFun);

Expression evaluate(const std::string&);

}

When DDT has to evaluate an expression using the a Wizard Library, each evaluation causes a call to
the Wizard Library's initialize() function followed by a call to the evaluate () function.

The initialize() function takes one argument, which is a pointer to a DDT function to call
whenever the Wizard Library requires access to a handle for the current VirtualProcess.

The VirtualProcess handle is required by the Wizard Library's evaluate () function to allow it
to make calls back into DDT in order to service the evaluation request.

© 2009 Allinea Software 81

Distributed Debugging Tool v2.4

The evaluate() function takes one argument, which is a constant-reference to a string containing

the expression to be evaluated. The function must perform some calculations and record the results

inside an Expressaion before returning that back to DDT.

DDT will examine the returned Expression and display the contents as the value of the expression

in the Evaluate window.
So, an example of a minimal (and fairly useless) Wizard Library would look like:
#include <Interface.h>

#include <iostream>
#include <string>

using namespace std;

typedef VirtualProcess*(*CurrentFun)();
static CurrentFun current = 0;

?xtern "c"

void* initialize(CurrentFun _current);

Expression evaluate(const string& e);

}
void* initialize(CurrentFun _current)
{
current = _current;
return (void*) 1;
}
Expression evaluate(const string& e)
{
cerr << "evaluate(" << e << ")" << endl;
Expression r(e);
try
.
VirtualProcess* v(current());
if (v)
{ . .
// Normally do some real work here, but just print out
// a diagnostic for now ...
cerr << "evaluate(" << e << "): acquired handle" << endl;
}
}
catch (...)
{
cerr << "evaluate(" << e <<
"): unknown exception caught"<< endl;
}
cerr << "evaluate(" << e << "): return" << endl;
return r;
}

© 2009 Allinea Software

82

Distributed Debugging Tool v2.4

6.1.2 Compiling A New Wizard Library
Two steps are required to build a new Wizard Library:

e create an object file from the source code, and
e link the object file and another, Expression. o, to create the Wizard Library

EXpression.o contains the required code to handle Expressions and is provided with the DDT
distribution.

The following example builds a Wizard Library using GNU g++:

$ g++ -c -pipe -Wall -W -g -fPIC -I. -o examplel.o examplel.cpp
$ g++ -shared -Wl,-E -W1l, -soname,libwizardexamplel.so.1 -o \
libwizardexamplel.so0.1.0.0 Expression.o examplel.o

6.1.1 Using A New Wizard Library

DDT uses an environment variable, DDT_WIZARD_DLL, to indicate the location of the Wizard
Library (if any) to use. Assuming your Wizard Library has been compiled as above under
{installation-directory}/wizard, the following Bourne-shell commands will DDT to run
and use the new Wizard Library on an example your_test_program binary.

$ DDT_WIZARD_DLL={installation-
directory}/wizard/libwizardexamplel.so0.1.0.0
$ export DDT_WIZARD_DLL

$ ddt your_test_program

6.1.2 The VirtualProcess Interface

DDT provides the Wizard Library with a VirtualProcess interface for each target process being
debugged. Although there may be many of these VirtualProcess instances, only the one
corresponding to the current target process is available when the Wizard Library is invoked by DDT.

As seen in the example above, the current VirtualProcess is retrieved using the 'get current'

function-pointer passed into the Wizard Library during DDT's call of the initialize () function:

VirtualProcess* v(current());
if (v)
The VirtualProcess interface contains the following methods:
virtual std::string readType(const std::string expression);
virtual Expression readExpression(const std::string expression);

readType () sends an expression back into DDT and returns a textual representation (according to
the underlying debugger, that is) of the type associated with that expression. This can be used to
determine how to process the original evaluate() request from DDT.

readExpression() send an expression back into DDT and returns an EXpression representing
the results of evaluating that expression.

The following code modifies a section of our first example, by reading the type of the expression sent

in by DDT and then sending the expression back into DDT for evaluation. This is somewhat of a
waste of time, in that it is acting as a "Loopback Wizard' and adding no extra value!

© 2009 Allinea Software 83

Distributed Debugging Tool v2.4

ostream& operator<< (ostream& strm, const Expression& e)

{

strm << "{ name = '" << e.getDisplayName() <<
"', value = '" << e.getValue() <<
mi } II;
return strm;

}

Expression evaluate(const string& e)

{

cerr << "evaluate(" << e << ")" << endl;
Expression r(e);
try
VirtualProcess* v(current());
if (v)
{
string eType(v->readType(e));

cerr << "evaluate(" << e << "): type = '" <<
eType << "'" << endl;

const Expression eResult(v->readExpression(e));

cerr << "evaluate(" << e << "): result = " <<
eResult << endl;

r = eResult;
}
}
catch (...)
{

cerr << "evaluate(" << e <<
"): unknown exception caught'"<< endl;

}

cerr << "evaluate(" << e << "): return" << endl;

return r;

}

After building this example and running DDT on a test program containing the following code:
string s = "hello world";
int i = 42;

the following is output when both variables are evaluated with the 'Null Wizard":

evaluate(1i)

evaluate(i): type = 'int'

evaluate(i): result = { name = 'i', value = '42' }
evaluate(i): return

evaluate(s)

evaluate(s): type = 'string'

evaluate(s): result = { name
evaluate(s): return

's', value

(] }

© 2009 Allinea Software

84

Distributed Debugging Tool v2.4

DDT reports the type and value of the integer variable 1, as you would expect. The type of the string
variable s proves no problem either. However, the value of the string variable S can not be
determined — which is why a Wizard Library is required!

6.1.3 The Expression Class

The results of an evaluation are returned using the Expression class. Simple Expressions
consist of a couple of strings:

e displayName (the notional name of this expression)
e Vvalue (the result of evaluating the expression)

Where the 'name' of the expression differs from the string sent to DDT for evaluation, another string
field in Expression is used:

e realName (actual expression evaluated by underlying debugger, can be the same as the
displayName for simple expressions)

An example of this will be coming up soon when we finally implement evaluation of strings.

Where more complicated expressions are involved, the value field is not used and is left blank.
Instead, a list of 'child' sub- Expressions are slung under this Expression using a fourth field:

e children (further sub-expressions)
The type of this fourth field is std: : vector<Expression>.

An example where the children field would be used is during the evaluation of a variable of type
vector. The displayName would be the name of the variable. The value would be empty.
There would be a number of children, one for each entry in the vector. Each of these
children would have their displayName set to a pretty-printed string representing their index
(e.g. “[4]”). Whether each of the children would have a value or whether they would contain
further children would depend upon how complex the data structure being evaluated was.

For instance, the following screen snapshot shows the evaluation of a variable of type
pair<deque<string>, list<list<string> > >:

Fig 57: Evaluation Of Strings

The Expression's displayName is set to
pairOfDequeOfStringsAndListOfListOfStrings and it has no value and two
children. The first child Expression has a displayName setto first, no value and has
three children . The first grandchild Expression has a displayName setto [0], value set
to "a deque-A string" and no further children.

6.1.1 Final String-Enabled Wizard Library Example
Update the operator<<() function to display more information:

ostream& operator<< (ostream& strm, const Expression& e)

{

strm << "{ name = '" << e.getDisplayName() <<
"', realName = '" << e.getRealName() <<
"', value = '" << e.getValue() <<
mi } Il;

© 2009 Allinea Software 85

Distributed Debugging Tool v2.4

return strm;

}

Examination of the contents of a string variable (in a test program compiled with GNU g++) shows
that it has a _M_dataplus data member which is further composed of a_M_p char* pointer.

With this in mind, modify the evaluate () function to behave specially for variables of type string:

Expression evaluate(const string& e)

{
cerr << "evaluate(" << e << ")" << endl;
Expression r(e);
try
t
VirtualProcess* v(current());
if (v)
{ .
string eType(v->readType(e));
cerr << "evaluate(" << e << "): type = '" <<
eType << "'" << endl;
if (eType == "string")
Expression
eResult(v->readExpression(e +
"._M_dataplus. M _p"));
// Want the pretty-printed name to be the name of
// the string itself.
eResult.setDisplayName(e);
r = eResult;
}
else
{
const Expression eResult(v->readExpression(e));
r = eResult;
}
cerr << "evaluate(" << e << "): result = " <<
r << endl;
}
}
catch (...)
{
cerr << "evaluate(" << e <<
"): unknown exception caught"<< endl;
}
cerr << "evaluate(" << e << "): return" << endl;
return r;
}

© 2009 Allinea Software 86

Distributed Debugging Tool v2.4

When DDT is run on the test program using a Wizard Library with this code, evaluating the integer
and string variables leads to the following output:

evaluate(i)

evaluate(i): type = 'int'

evaluate(i): result = { name = 'i', realName = 'i', value = '1' }
evaluate(i): return

evaluate(s)

evaluate(s): type = 'string'

evaluate(s): result = { name = 's', realName = 's._M_dataplus._M_p',

14
value = '0x8061014 "hello world"' }
evaluate(s): return

Notice that the Expression for the string evaluation has different values for the displayName and
realName fields.

Single-stepping the test program yields the following output:

evaluate(i)
evaluate(i): type = 'int'
evaluate(i): result = { name = 'i', realName = 'i', value = '1' }

evaluate(i): return

evaluate(s._M_dataplus._M_p)

evaluate(s._M_dataplus._M_p): type = 'char *'
evaluate(s._M_dataplus._M_p): result = { name = 's._M dataplus._M_p',
realName = 's._M_dataplus._M p', value = '0x8061014 "hello world"' }
evaluate(s._M_dataplus._M_p): return

What is happening here is that DDT has decided to re-evaluate each variable after the single-step
operation has occurred, and has recognised that the string variable's displayName and realName
differ. The realName string is sent back to the Wizard Library for evaluation and matched up to the
original variable in the Evaluate window upon reply.

© 2009 Allinea Software 87

Distributed Debugging Tool v2.4

7 The Licence Server

The licence server supplied with DDT is capable of serving clients for several different licences,
enabling one server to serve all Allinea software in an organization.

7.1 Running The Server

For security, the licence server should be run as an unprivileged user (e.g. nobody). If run without
arguments, the server will use licences in the current directory (files matching Licence* and
License™). An optional argument specifies the pathname to be used instead of the current.

System administrators will normally wish to add scripts to start the server automatically during
booting.

7.2 Running DDT Clients

DDT will, as is also the case for fixed licences, use a licence file either specified via environment
variables (DDT_LICENCE_FILE or DDT_LICENSE_FILE) or from the default location of
{installation-directory}/Licence.

In the case of floating licences this file is unverified and in plain-text, it can therefore be changed by
the user if settings need to be amended.

The fields are:

Name Required Description

hostname Yes The hostname, or IP address of the licence server

ports No A comma separated list of ports to be tried locally for GUI-
backend communication in DDT, Defaults to
4242,4243,4244,4244,4245

serial_number Yes The serial number of the server licence to be used

serverport Yes The port the server listens on

type Yes Must have value 2 — this identifies the licence as needing a
server to run properly

Note: The serial number of the server licence is specified as this enables a user to be tied to a particular licence.

7.3 Logging

Set the environment variable DDT_LICENCE_LOGFILE to the file that you wish to append log
information to. Set DDT_LICENCE_LOGLEVEL to set the amount of information required. These
steps must be done prior to starting the server.

Level 0: no logging.

Level 1: client licences issued are shown, served licences are listed.

Level 2: stale licences are shown when removed, licences still being served are listed if there is no
spare licence.

Level 3: full request strings received are displayed

Level 6 is the maximum.

In level 1 and above, the MAC address, username, process ID, and IP address of the clients are logged.

7.4 Troubleshooting

Licences are plain-text which enables the user to see the parameters that are set; a checksum verifies
the validity. If problems arise, the first step should be to check the parameters are consistent with the

© 2009 Allinea Software 88

Distributed Debugging Tool v2.4

machine that is being used (MAC and IP address), and that, for example, the number of users is as
expected.

7.5 Adding A New Licence

To add a new licence to be served, copy the file to the directory where the existing licences are served
and restart the server. Existing clients should not experience disruption, if the restart is completed
within a minute or two.

7.6 Examples

In this example, a dedicated licence server machine exists but uses the same filesystem as the client
machines, and DDT is installed at /opt/software/ddt.

To run the 1icenceserver as nobody, serving all licences in /opt/software/ddt, and
logging most events to the /tmp/licence.ddt.log

% su - nobody

Password:

% export DDT_LICENCE_LOGFILE=/tmp/licence.ddt.log
% export DDT_LICENCE_LOGLEVEL=2

% cd /opt/software/ddt

% ./bin/licenceserver /opt/software/ddt/ &

% exit

Serving the floating licences from the same directory as a normal DDT installation is possible as the
licence server will ignore licences that are not server licences.

If the server licence is file /opt/software/Licence.server.physics and is served by the
machine server.physics.acme.edu, at port 4252, the licence would look like:

type=3

serial_number=1014

max_processes=48

expires=2004-04-01 00:00:00
support_expires=2004-04-01 00:00:00
mac=00:E0:81:03:6C:DB
interface=etho

debuggers=gdb

serverport=4252

max_users=2

beat=60

retry_limit=4

hash=P5I:?L, FS=[CCTB<IW4
hash2=c18101680ae9f8863266d4aa7544de58562ea858

Then the client licence could be stored at /opt/software/Licence and contain:
type=2
serial number=1014

hostname=server.physics.acme.edu
serverport=4252

7.7 Example Of Access Via A Firewall

SSH forwarding can be used to reach machines that are beyond a firewall, for example the remote user
would start:

ssh -C -L 4252:server.physics.acme.edu:4242 login.physics.acme.edu

© 2009 Allinea Software 89

Distributed Debugging Tool v2.4

And a local licence file should be created:

type=2
serial_number=1014
hostname=localhost
serverport=4252

7.8 Querying Current Licence Server Status

The licence server provides a simple HTML interface to allow for querying of the current state of the
licences being served. Point your favorite web browser at a URL of the form:

http://<hosthame>:<serverport>/status.html

For example, using the values from the licence file examples, above:

http://server.physics.acme.edu:4252/status.html

Initially, no licences will be being served, and the output in your browser window should look
something like:

[Licences start]
[Licence Serial Number: 1014]
[No licences allocated - 2 available]
[Licences end]

As licences are served and released, this information will change. To update the licence server status
display, simply refresh your web browser window. For example, after one DDT has been started:

[Licences start]
[Licence Serial Number: 1014]
[1 licences available]
[Client 1]
[mac=00:04:23:99:79:65; uname=gwh; pid=14007; licence=1014]
[Latest heartbeat: 2004-04-13 11:59:15]
[Licences end]

Then, after another DDT is started and the web browser window is refreshed (notice the value for
number of licences available):

[Licences start]
[Licence Serial Number: 1014]
[0 licences available]
[Client 1]
[mac=00:04:23:99:79:65; uname=gwh; pid=14007; licence=1014]
[Latest heartbeat: 2004-04-13 12:04:15]
[Client 2]
[mac=00:40:F4:6C:4A:71; uname=graham; pid=3700; licence=1014]
[Latest heartbeat: 2004-04-13 12:04:59]
[Licences end]

Finally, after the first DDT finishes:

[Licences start]
[Licence Serial Number: 1014]
[1 licences available]
[Client 1]
[mac=00:40:F4:6C:4A:71; uname=graham; pid=3700; licence=1014]
[Latest heartbeat: 2004-04-13 12:07:59]
[Licences end]

© 2009 Allinea Software 90

Distributed Debugging Tool v2.4

7.9 Licence Server Handling Of Lost DDT Clients

Should the licence server lose communication with a particular instance of a DDT client, the licence
allocated to that particular DDT client will be made unavailable for new DDT clients until a certain
timeout period has expired. The length of this timeout period can be calculated from the licence server
file values for beat and retry_limit:

lost_client_timeout_period = (beat seconds) * (retry_limit + 1)
So, for the example licence files above, the timeout period would be:

60 * (4 + 1) = 300 seconds

During this timeout period, details of the 'lost' DDT client will continue to be output by the licence
server status display. As long as additional licences are available, new DDT clients can be started.
However, once all of these additional licences have been allocated, new DDT clients will be refused a
licence while this timeout period is active.

After this timeout period has expired, the licence server status will continue to display details of the

lost' DDT client until another DDT client is started. The licence server will grant a licence to the new
DDT client and the licence server status display will then reflect the details of the new DDT client.

© 2009 Allinea Software 91

Distributed Debugging Tool v2.4

8 Using and Writing Plugins for DDT
8.1 Supported Plugins

At the time of release, DDT supports plugins for two MPI correctness-checking libraries:

e Intel Message Checker, part of the Intel Trace Analyzer and Collector (Commercial with free
evaluation: http://www.intel.com/cd/software/products/asmo-na/eng/306321.htm) version 7.1

e Marmot (Open source: http://www.hlrs.de/organization/amt/projects/marmot), support
expected in version 2.2 and above.

8.1 Installing a Plugin

To install a plugin, locate the XML DDT plugin file provided by your application vendor and copy it
to:

{ddt-installation directory}/plugins/
It will then appear in DDT's list of available plugins on the DDT - Run dialog.

Each plugin takes the form of an XML file in this directory. These files are usually provided by third-
party vendors to enable their application to integrate with DDT. A plugin for the Intel Message
Checker (part of the Intel Trace Analyser and Collector) is included with the DDT distribution.

8.2 Using a Plugin

To activate a plugin in DDT, simply click on the checkbox next to it in the window, then run your
application. Plugins may automatically perform one or more of the following actions:

e Load a particular dynamic library into your program

e Pause your program and show a message when a certain event such as a warning or error
occurs

e Start extra, optionally hidden MPI processes (see the Writing Plugins section for more details
on this)

If DDT says it cannot load one of the plugins you have selected, check that the application is correctly
installed, and that the paths inside the XML plugin file in {ddt-installation
directory}/plugins/ match the installation path of the application.

8.1 Writing a Plugin

Writing a plugin for DDT is easy. All that is needed is an XML plugin file that looks
something like this:

<plugin name="Sample v1.0" description = "A sample plugin that
demonstrates DDT's plugin interface.">

<preload name="samplelib1" />

<preload name="samplelib2" />

<environment name="SUPPRESS_LOG" value="1" />

<environment name="ANOTHER_VAR" value='"some value" />

<breakpoint location="sample_log" action="log"
message_variable="message" />

<breakpoint location="sample_err" action="message_box"
message_variable="message" />

© 2009 Allinea Software 92

http://www.hlrs.de/organization/amt/projects/marmot
http://www.hlrs.de/organization/amt/projects/marmot
http://www.hlrs.de/organization/amt/projects/marmot
http://www.intel.com/cd/software/products/asmo-na/eng/306321.htm
http://www.intel.com/cd/software/products/asmo-na/eng/306321.htm
http://www.intel.com/cd/software/products/asmo-na/eng/306321.htm

Distributed Debugging Tool v2.4

<extra_control_process hide="last" />

</plugin>

Only the surrounding “plugin” tag is required — all the other tags are entirely optional. A complete

description of each appears in the table below. If you are interested in providing a plugin for DDT as

part of your application bundle, we will be happy to provide you with any assistance you need getting
up and running. Contact support@allinea.com for more information.

Tag Attribute

Description

plugin name

The plugin's unique name. This should
include the application/library the plugin is
for, and its version. This is shown in the DDT
— Run dialog.

plugin description

A short snippet of text to describe the
purpose of the plugin/application to the user.
This is also shown in the DDT — Run dialog.

preload name

Instructs DDT to preload a shared library of
this name into the user's application. The
shared library must be locatable using
LD_LIBRARY_PATH, or the OS will not be
able to load it.

environment name

Instructs DDT to set a particular environment
variable before running the user's application.

environment value

The value that this environment variable
should be set to.

breakpoint location

Instructs DDT to add a breakpoint at this
location in the code. The location may be in a
preloaded shared library (see above).
Typically this will be a function name, or a
fully-qualified C++ namespace and class
name. C++ class members must include their
signature and be enclosed in single quotes,
e.g.
'MyNamespace::DebugServer::breakpointOn
Error(char*)'

breakpoint action

Only “message_box” is supported in this
release. Other settings will cause DDT to
stop at the breakpoint but take no action.

breakpoint message_variable

A char* or const char* variable that contains
a message to be shown to the user. DDT will
group identical messages from different
processes together before displaying them to
the user in a message box.

extra_control_process | hide

Instructs DDT to start one more MPI process
than the user requested. The optional 'hide'
attribute can be “first” or “last”, and will
cause DDT to hide the first or last process in
MPI_COMM_WORLD from the user. This
process will be allowed to execute whenever
at least one other MPI process is executing,
and messages or breakpoints (see above)
occurring in this process will appear to come
from all processes at once.

This is only necessary for tools such as
Marmot that use an extra MPI process to
perform various runtime checks on the rest of
the MPI program.

© 2009 Allinea Software

93

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

A Supported Platforms

A full list of supported platforms and configurations is maintained on the Allinea website. It is likely
that MPI distributions supported on one platform will work immediately on other platforms.

Platform

Operating Systems

MPI

Compilers

Intel/AMD x86

AMD Opteron (32+64)
Intel Itanium 2

Intel EM64T

IBM Power

RHEL 4, 5; SUSE 9,
10; SLES 9, 10;
Fedora 4, 5; Ubuntu
8.04

All known MPIs —
including but not
limited to:

SGI Altix, Bproc,
Bull MPI 1 and 2,
LAM-MPI, MPICH,
Myricom MPICH-
GM and MPICH-
MX, OpenMPI,
Quadrics MPI, Scali
MPI Connect, SCore,
Scyld, Intel MPI,
Slurm

MVAPICH (IBGD
1.8.1 and above)

GNU, Absoft, Intel,

Pathscale, and Portland

Cell Broadband Engine

Fedora Core 7

As above

Cell BE SDK 3.0

IBM Power

AIX 5.2 and above

IBM PE, MPICH

Native, GNU

Sun Sparc

Solaris 9 and above

Sun Clustertools 5
and above

Native — Studio 11

Sun Solaris Opteron

Solaris 10 and above

Sun Clustertools 6, 7
and MPICH

Native — Studio 11/12,
GNU

Cray XT4

SLES 9, 10
(frontend)

Native

Blue Gene/P

SLES 10 (frontend)

Native

Native, GNU

NEC SX8

SUPER-UX 15.1
(backend only)

Native

Native

© 2009 Allinea Software

94

Distributed Debugging Tool v2.4

B MPI Distribution Notes and Known Issues

This appendix has brief notes on many of the MPI distributions supported by DDT. Advice on
settings and problems particular to a distribution are given here.

B.1 Bproc

By default, the p4 interface will be chosen. If you wish to use GM (Myrinet), place -gm in the
MPIRun Arguments, and this will be used instead. Select Generic as the MPI implementation.

B.2 Bull MPI

There are two versions of MPI supported for Bull: MPI 1, and MPI 2. Inifiniband users should
always select Bull MPI 2, other users will need to check which version of Bull MPI is installed.

Select Bull MPI or Bull MPI 1 for Bull MPI 1, or Bull MPI 2 for Bull MPI 2 from the MPI
implementations list. In the Advanced settings, you may also wish to specify the partition that you
wish to use — by adding

-p partition_name

You should ensure that prun, the command used to launch jobs, is in your PATH before starting DDT.

B.3 HP MPI
Select HP MPI as the MPI implementation.

A number of HP MPI users have reported a preference to using mpirun -f jobconfigfile
instead of mpirun -np 10 a.out for their particular system. It is possible to configure DDT to
support this configuration — using the support for batch (queuing) systems.

The role of the queue template file is analogous to the -f jobconfigfile.

If your job config file normally contains:

-h node01 -np 2 a.out
-h node02 -np 2 a.out

Then your template file should contain:

-h node01 -np PROCS_PER_NODE_TAG /usr/local/ddt/bin/ddt-debugger
-h node02 -np PROCS_PER_NODE_TAG /usr/local/ddt/bin/ddt-debugger

and the Submit Command box should be filled with
mpirun -f
Select the Template uses NUM_NODES_TAG and PROCS_PER_NODE_TAG radio button. After this

has been configured by clicking OK, you will be able to start jobs. Note that the Run button is
replaced with Submit, and that the number of processes box is replaced by Number of Nodes.

B.4 Intel MPI
Select Intel MPI from the MPI implementation list. DDT has been tested with Intel MPI 2.0 and 3.0.

DDT also supports the Intel Message Checker tool that is included in the Intel Trace Analyser and
Collector software. A plugin for the Intel Trace Analyser and Collector version 7.1 is provided in

© 2009 Allinea Software 95

Distributed Debugging Tool v2.4

DDT's plugins directory. Once you have installed the Intel Trace Analyser and Collector, you should
make sure that the following directories are in your LD_LIBRARY_PATH:

{path to intel install directory}/itac/7.1/1ib
{path to intel install directory}/itac/7.1/slib

The Intel Message Checker only works if you are using the Intel MPI. Make sure Intel's mpiexec is in
your path, and that your application was compiled against Intel's MPI, then launch DDT, check the
plugin checkbox and debug your application as usual. If one of the above steps has been missed out,
DDT may report an error and say that the plugin could not be loaded.

Once you are debugging with the plugin loaded, DDT will automatically pause the application
whenever Intel Message Checker detects an error. The Intel Message Checker log can be seen in the
standard error (stderr) window.

Note that the Intel Message Checker will abort the job after 1 error by default. You can modify this by
adding -genv VT_CHECK_MAX_ERRORS 0 to the MPIRun arguments in the advanced section of
DDT's Run dialog — see Intel's documentation for more details on this and other environment variable
modifiers.

B.5 LAM/MPI

No reported issues with this distribution. Select LAM-MPI as the MPI implementation.

B.6 MPICH p4
Choose MPICH Standard as the MPI implementation.

On some AIX systems you may need to use Generic instead.

B.7 MPICH p4 mpd

This daemon based distribution passes a limited set of arguments and environments to the job
programs. If the daemons do not start with the correct environment for DDT to start, then the
environment passed to the ddt - debugger backend daemons will be insufficient to start.

It should be possible to avoid these problems if .bashrc or .tcshrc/.cshrc are correct.
However, if unable to resolve these problems, you can pass HOME and LD_LIBRARY_PATH, plus any
other environment variables that you need, such as LM_LICENSE_FILE if you're using the Portland
debugger, manually. This is achieved by adding -MPDENV -HOME={homedir}
LD_LIBRARY_PATH={1d-1ibrary-path} to the Arguments area of the Run window.
Alternatively from the command-line you may simply write:

$DDT {program-name} -MPDENV- HOME=$HOME LD_LIBRARY_PATH=$LD_LIBRARY_PATH
and your shell will fill in these values for you.

Choose MPICH Standard as the MPI implementation.

B.8 MPICH-GM

No known issues.

© 2009 Allinea Software 96

Distributed Debugging Tool v2.4

B.9 MPICH SHMEM

This distribution intercepts standard input and output and redirects it to process 0. DDT will show all
output as coming from process 0.

With some compilers, DDT may not jump to the starting location immediately when the job has
started. If DDT starts without showing any highlighted lines, simply click on a line in the Parallel
Stack View and DDT will jump to that location.

If you are running MPICH SHMEM locally (e.g. on a workstation) then choose MPICH SHMEM as
the MPI implementation. If you are submitting jobs through a queue, choose MPICH Standard as the
MPI implementation.

B.10 IBM PE

If you are able to use poe outside of a queuing system, set the environment variable DDTMPIRUN to
the full pathname of poe. If your poe does not take the standard mpirun arguments (e.g. -np XX),
it is advisable to write a wrapper script called mpirun which will invoke poe with the arguments you
want.

In the present release of DDT, it is sometimes necessary to set the DDT_DONT_GET_RANK variable to
1 for MPI debugging. Without this, processes will not be able to start.

A sample Loadleveller script, which starts debugging jobs on IBM AIX (POE) systems is included in
the {installation-directory}/templates directory. When working with Loadleveller, it
is necessary to set the environment variable DDT_IGNORE_MPI_OUTPUT to 1.

Select IBM PE as the MPI implementation.

B.11 MVAPICH

Versions of the Mellanox IBGD prior to 1.8.1 do not work with debuggers, due to a kernel bug with
Infiniband drivers. DDT has been tested successfully with IBGD 1.8.1 running mvapich 0.9.5. Select
Generic as the MPI interface. You will need to specify the hosts on which to launch your job to
mvapich's mpirun by using the -hostfile filename or individually as per the mvapich
documentation in the MPIrun Arguments box, which is available by pressing the Advanced button
on the Run window.

B.12 NEC MPI

This implementation has been known to forcefully kill DDT when the MPI job finishes. This makes it
impossible to use DDT's Session — Restart. If this affects you, please contact support@allinea.com.

Select Generic as the MPI implementation.

B.13 OpenMPI

DDT has been tested with OpenMPI 1.0.1, 1.1, 1.2, 1.2.4. Select OpenMPI from the list of MPI
implementations.

Message Queues are not supported by this MPI in version 1.2 or earlier. To use Message Queue
debugging, please install OpenMPI 1.2.4 or later.

OpenMPI 1.2.4 must be compiled with “--enable-debug” as a configure option, but this is expected to
not be necessary for any subsequent versions of OpenMPI.

© 2009 Allinea Software 97

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

B.14 Quadrics MPI

Older versions of the Quadrics MPI stack contained a bug that prevented DDT from starting large jobs
reliably. If you experience problems using DDT on this platform, please make sure you have installed
the latest version, and then contact support@allinea.com.

Select Generic as the MPI implementation.

B.15 SCore

DDT is supported by SCore versions 5.8.2 and above, some earlier versions can also support DDT by
applying a minor patch. DDT can be launched either within a scout session, or using a queue.

For versions up to and including 5.8.2 a glitch in SCore prevents arguments being passed to programs
during debugging; a patch is available for this which is easy to apply. Contact Allinea if this issue
affects you.

There are several methods to start DDT on an SCore system and your administrator should
recommend one for use with your cluster. Allinea recommend using a Sun GridEngine and provide a
queue template file for this system. However, we have found the following method to work on single-
user mode clusters:

1. Make sure your home directory is mounted on each cluster node

2. Create a host file containing a list of the computer nodes your intend to run the job on
3. Start a scout session: scout -F host.list

4. Start DDT at the prompt: ddt

5. Make sure DDT is configured for SCore mode, with the correct number of processes. Use the
MPI Argument nodes=MxN to specify the number of processes per node and number of
nodes, as documented for scrun. Make sure to multiply these numbers when selecting the
number of processes for DDT! Both must be specified for single-user mode Score systems

6. Click on Start

Note that the first release of Score 5.6.0 shipped with a flaw in scrun.exe — this prevents DDT shutting
down a job correctly. The scout session must be closed and reopened between DDT sessions on these
systems. This only affects single-user mode Score 5.6.0 installs.

If environment variables are not being propagated to remote nodes, we suggest moving
{installation-directory}/bin/ddt-debugger to {installation-
directory}/bin/ddt-debugger.bin, and creating a replacement executable shell script
which sets the correct environment variables before running ddt -debugger . bin — for example:

#1/bin/sh
./bashrc
{installation-directory}/bin/ddt-debugger.bin $*

Choose SCore as the MPI implementation.

Note also that the number of processors chosen must equal the number of processors declared in the
Scout host file; if you choose fewer, or more, the job will not start in DDT.

To attach to an SCore job, DDT can in some circumstances be blocked by the signals (SIGSTOP)
which SCore sends to the user job. If this occurs, the progress bar will stop at some point whilst

© 2009 Allinea Software 98

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

attaching and make no further progress. To resolve the problem, send a SIGCONT to all processes in
the job. This can be achieved by the following command:

doall kill SIGCONT -1

where doall is a command which executes the kill on every node in the job.

SCore typically links applications statically — which means that Memeory Debugging is not enabled by
default. To enable Memory Debugging, use the -nostatic option to the compiler
(mpicc/mpif90).

B.1 Scyld

When running under Scyld, DDT starts all its ddt -debugger processes on the local machine instead
of on the nodes. This is because Scyld represents the cluster as a single system image. For all but the
largest clusters this should not be a problem. If this is an issue for you (insufficient file handles etc.)
then contact Allinea for additional assistance.

The process details window will not show any hostnames when running under Scyld. This should not
matter because Scyld represents a cluster as a single system image.

Choose Scyld as the MPI implementation.

B.2 SGI Altix

Early versions SGI's MP Toolkit can a crash due to a library problem. This is easily resolved if it
occurs. Compile your application with the extra linking flag - 1rt and try DDT again.

You cannot use DDT's queue submission system with this MPI implementation. However, you can
still use an interactive shell from your queue to launch DDT and then your application, or you can start
jobs manually and attach to them using DDT.

Choose SGI MP Toolkit as the MPI implementation.

B.3 Sun Clustertools

DDT has been tested with Clustertools 5 for Solaris on SPARC and Clustertools 6 and 7 for Solaris on
Opteron.

To run with more processes than are physically available on the cluster, you'll need to add:
-W
to the MPIRun Arguments box (click on Advanced in the Run window).

Choose Sun HPC 5-6 as the MPI implementation for version 5 or 6. Choose Sun HPC 7+ for version
7.

B.4 Cray XT4

DDT has been tested with Cray CLE — with DDT submitting via the queue and also from within an
interactive shell.

Ensure that DDT is installed on a filesystem that is accessible to the compute nodes as well as the
login nodes.

© 2009 Allinea Software 99

Distributed Debugging Tool v2.4

A template file for launching applications from within the queue (using DDT'"s job submission
interface) is included in the distribution of DDT (templates/xt4.qtf). If a consistent SHOME is not
available across the compute nodes, this file will need to be edited to point “aprun” to a globally
avaiable directory before it launches DDT's daemons (eg. a Lustre scratch partition for example).

Note that the default mode for compilers on this platform is to link statically. Section E describes how
to ensure that DDT's memory debugging capabilities will work with the PGI compilers in this mode.

© 2009 Allinea Software 100

Distributed Debugging Tool v2.4

C Compiler Notes and Known Issues

Always compile with a minimal amount of, or no, optimization - some compilers reorder instruction
execution and omit debug information when compiled with optimization turned on.

Some MPI implementations such as MPICH 1.2.5, require you to compile your code with the same
compiler family as the implementation was compiled with. For example, if your copy of MPICH was
compiled up using the Intel compilers, you should also compile your programs using the Intel
compilers.

C.1 Absoft

No known issues.

C.2 GNU

The compiler flag -fomit-frame-pointer should never be used in an application which you
intend to debug. Doing so will mean DDT cannot properly discover your stack frames and you will be
unable to see which lines of code your program has stopped at!

For GNU C++, large projects can often result in vast debug information size, which can lead to large
memory usage by DDT's backend debuggers — for example each instance of an STL class used in
different object files will result in the compiler generating the same information in each object file.
This large memory usage can result in excessive thrashing of the disks due to using swap memory —
and this becomes even more noticeable for SMP systems where two processors or more share the same
memory resource. For SMP systems, if a severe performance issue is noted whilst debugging with
DDT we suggest forcing the MPI to use only one CPU per node. Allinea are happy to advise users of
how to achieve this with most common MPIs.

C.3 IBM XLCIXLF

It is advisable to use the -qfullpath option to the IBM compilers (XLC/XLF) in order for source
files to be found automatically by DDT when they are in directories other than that containing the
executable. This flag has been known to fail for mpxIf95, and so there may be circumstances when
you must right click in the project navigator and add additional paths to scan for source files.

Module data items behave differently between 32 and 64 bit mode, with 32-bit mode generally
enabling access to more module variables than 64-bit mode.

Arrays with many dimensions may take several seconds to display in the Locals, Current Line and
Evaluate views. If you experience this with your code, please contact support@allinea.com.

A bug in XLC 7.0.0.0 could cause the stack to become corrupt, making debugging impossible. This is
fixed in releases 7.0.0.2 and above.

A bug in the XLF compiler means that to view pointer details or check pointer validity, you may have
to right-click on the pointer in the evaluate panel and choose Dereference. DDT will now say that the
“<expression cannot be evaluated>”, but View Pointer Details will now work as expected.

Missing debug information in the binaries produced by XLF can prevent DDT from showing the
values in Fortran pointers and allocatable arrays correctly, and assumed-size arrays cannot be shown at
all. Please update to the latest compiler version before reporting this to support@allinea.com.

Sometimes, when a process is paused inside a system or library call, DDT will be unable to display the
stack, or the position of the program in the Code view. To get around this, it is sometimes necessary to
select a known line of code and choose Run to here. If this bug affects you, please contact
support@allinea.com.

© 2009 Allinea Software 101

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

Evaluating functions is not supported on the AIX or Linux on Power platforms.

DDT has been tested against the C compiler xIc version 7.0 and Fortran/Fortran 90 version 9.1 — on
both Linux and AIX. Note that xIC (C++) is not fully supported on AIX.

To view Fortran assumed size arrays in DDT you must first right click on the variable, select Edit
Type.., and enter the type of the variable with its bounds (e.g. integer arr(5)).

C.4 Intel Compilers

The recommended debugger for this compiler is Automatic. DDT has been tested with versions 8.1,
9.0 and 10.

Known issues: IFC can generate unexpected location information for variables when compiled with
- save option, leading to incorrect data values. It is recommended that the - Save option is not used.

The Intel compilers treat allocatable arrays as arrays, and as such the View Pointer Details command
does not work when used directly. You can view the details of the arrays via the Current Usage
window instead.

A bug in the Intel 8.1 compiler can prevent DDT from displaying some variables inside module
subroutines. If this affects you, please email support@allinea.com.

Some compiler optimizations performed when -ax options are specified to IFC/ICC can result in
programs which cannot be debugged. This is due to the reuse by the compiler of the frame-pointer,
which makes DDT unable to obtain a stack trace.

The Intel compiler doesn't always provide enough information to correctly determine the bounds of
some Fortran arrays when they are passed as parameters, in particular the lower-bound of assumed-
shape arrays.

The Intel OpenMP compiler will always optimise parallel regions, regardless of any - 00 settings. This
means that your code may jump around unexpectedly while stepping inside such regions, and that any
variables which may have been optimised out by the compiler may be shown with nonsense values.
There have also been problems reported in viewing thread-private data structures and arrays. If these
affect you, please contact support@allinea.com.

Files with a .F or .F90 extension are automatically preprocessed by the Intel compiler. This can also
be turned on with the the - fpp command-line option. Unfortunately, the Intel compiler does not
include the correct location of the source file in the executable produced when preprocessing is used.
If your Fortran file does not make use of macros and doesn't need preprocessing, you can simply
rename its extension to .f or .f90 and/or remove the “-fpp” flag from the compile line instead.
Alternatively, you can help DDT discover the source file by right clicking in the Project Files window
and then selecting Add/view source directory and adding the correct directory.

OpenMP debugging is not supported with versions 8.x of the Intel compiler.

C.5 Pathscale EKO compilers

The recommended debugger for this compiler is Automatic; DDT has been tested with version 2.2.1
and 2.3 of this compiler suite.

Notes for version 1.4: Fortran pointers are reported as their values, not addresses, so do not need to be
dereferenced. This may also occur with later versions.

Known issues with Pathscale 2.5: The default Fortran compiler options do not generate enough
information for DDT to show where memory was allocated from — View Pointer Details will not show

© 2009 Allinea Software 102

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

which line of source code memory was allocated from. To enable this, please use version 2.3 of the
compiler and compile and link with the following flags:

-W1, - -export-dynamic -TENV:frame_pointer=0N -funwind-tables
For C programs, simply compiling with -g is sufficient.

When using the Fortran compiler, you may have to place breakpoints in myfile. i instead of
myfile.f90 or myfile.F90. We are currently investigating this; please let us know if it applies to
your code.

In some 64-bit codes the compiler fails to include the proper augmentation data in the FDEs, which
can cause back-end debuggers to crash. We hope this will be fixed when version 3.0 of the compiler is
released.

Procedure names in modules often have extra information appended to them. This does not otherwise
affect the operation of DDT with the Pathscale compiler.

OpenMP debugging is not supported with versions 2.x of this compiler. If you need to debug OpenMP
Pathscale codes, please obtain the 3.0 release version and contact support@allinea.com for the latest
information on related problems and workarounds.

At the time of writing, the most recent version available is 2.9.99 — it is possible to debug OpenMP
codes using this version, with the restriction that you must only use Step threads together to go into a
parellel region, or within a parallel region, but never to leave one or to run to a point outside one. This
2.9.99 version has not been extensively tested and is not officially supported in this release, but we
will do our best to help you if you encounter any difficulties.

When OpenMP is used with Pathscale 3.1 calling the fork () system call may cause your program to
segfault with some versions of the GNU C library. This affects MPICH when configured to use the
ch_shmem device.

C.6 Portland Group Compilers
DDT has been tested with Portland Tools 4, 5, 6 and 7.1-4.

Known issues with Portland 5.2 and 6.0: Assumed shape arrays can have wrong dimensions (Portland
reference TPR 301). The View Pointer Details window cannot show which line of code memory was
allocated from in Fortran codes with the 64-bit version of this complier.

Known issues with Portland 6/7: Included files in Fortran 90 generate incorrect debug information
with respect to file and line information. The information gives line numbers which refer to line
numbers from the included file but give the including file as the file.

Known Issue: All versions. When using memory debugging with statically linked PGI executables
(-Bstatic) because of the in-built ordering of library linkage for F77/F90, you will need to add a localrc
file to your PGI installation which defines the correct linkage when using DDT and (static) memory
debugging. To your {pgi-path}/bin/localrc append the following:

switch -Bstaticddt is
help(Link for DDT memory debugging with static binding)
helpgroup(linker)
append (LDARGS=- -eh-frame-hdr -allow-multiple-definitions)

append (LDARGS=-Bstatic)

append (LDARGS=-L{DDT-Install-Path}/1ib/64)

set (CRTL=$if(-Bstaticddt, -1ldmalloc -1lc -1ns$(PREFIX)c
-1$(PREFIX)c, -1lc -1ns$(PREFIX)c -1$(PREFIX)c))

© 2009 Allinea Software 103

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

set(LC=$if(-Bstaticddt, -1dmalloc -lgcc -lgcc_eh -1lc -1lgcc
-lgcc_eh -1c, -1lgcc -1lc -1lgcc));

“pgf90 -help” will now list “~Bstaticddt” as a compilation flag. You should now use that flag for
memory debugging with static linking.

This does not affect the default method of using PGI and memory debugging, which is to use dynamic
libraries.

Note that some versions of “ld” (notably in SLES 9 and 10) silently ignore the “--eh-frame-hdr”
argument in the above configuration, and a full stack for F90 allocated memory will not be shown in
DDT. You can work around this limitation by replacing the system “ld”, or by including a more
recent “ld” earlier in your path. This does not affect memory debugging in C/C++.

When you pass an array splice as an argument to a subroutine that has an assumed shape array
argument, the offset of the array splice is currently ignored by DDT. Please contact
support@allinea.com if this affects you.

DDT may show extra symbols for pointers to arrays and some other types. For example if your
program uses the variable ialloc2d then the symbol ialloc2d$sd may also be displayed. The
extra symbols are added by the compiler and may be ignored.

C.7 Sun Forte Compilers and Solaris DBX

When using DDT on Solaris, DDT will use the native DBX to debug each process in a parallel job.
Some versions of DBX may prevent redirection of stdout/stderr, which means that DDT may not
display the program output. If your version of DBX is affected then Allinea recommend writing
output to a file instead.

Watches are not supported by this debugger in multi-threaded codes - which includes all parallel codes
using Sun Clustertools - consequently DDT cannot support watches when using DBX.

DDT has been tested with Solaris 10 for Opteron, using Sun Studio 11 (DBX 7.5). Earlier versions
can exhibit some fatal problems and we strongly recommend users upgrade to the most recent version
available from Sun. If DDT fails to start your debugging session, please contact Allinea for advice.

Stepping into an include file may take an extra Step Into command before the file is displayed.

DDT cannot determine the correct bounds of assumed-shape arrays on this platform. Future versions
of Sun Studio may correct this problem.

At the time of writing, the current DBX version (7.5) treats Fortran allocatable arrays inside derived
types unusually and this affect DDT's operation in the following ways:

e Allocatable arrays inside derived types are displayed as a hex address instead of an array.
Drag these into the Evaluate window as a single item (e.g. nested%array) to view the
contents of the array, or right-click and use the MDA viewer.

e Very large allocatable arrays inside derived types cannot be limited in the Evaluate window at

all — instead of displaying the first 200 (or so) elements DDT will not display any. Right-click
on the array and use the MDA viewer to inspect its contents.

© 2009 Allinea Software 104

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

A Platform Notes and Known Issues

This page notes any particular issues affecting platforms. If a supported machine is not listed on this
page, it is because there is no known issue.

A.1 GNU/Linux Systems

Some 64-bit GNU/Linux systems which have a bug in the GNU C library (specifically
libthread_db.so.1) which can crash the debugger when debugging multi-threaded programs.
Check with your Linux distribution for a fix. As a workaround you can try compiling your program as
a statically linked executable using the - static compiler flag.

Some GNU/Linux distributions (e.g. RHEL 4) that use the Native POSIX Threads Library (NPTL) do
not provide a static NPTL library. Instead the static threads library uses LinuxThreads instead. The
thread debugging library (Libthread_db. so.1) may not include support for LinuxThreads so you
will be unable to debug statically linked multi-threaded programs on these distributions. We
recommend you do not compile your programs as statically linked executables unless unavoidable.

Attaching to a stopped process does not work with some Linux kernel versions due to a kernel bug.
This may break the Stop on Fork feature.

The memory allocation library calls (e.g. malloc) provided by the memory debugging library are not
async-signal-safe unlike the implementations in recent versions of the GNU C library. POSIX does not
require malloc to be async-signal-safe but some programs may expect this behaviour. For example a
program that calls printf from a signal handler may deadlock when memory debugging is enabled
in DDT since the C library implementation of printf may call malloc.

Some older versions of the Linux kernel have a bug which make it slow to read large variables on the
stack, e.g. arrays. When memory debugging is enabled it is even slower due to way the kernel memory
management subsystem is implemented. This issue only occurs on 32-bit platforms.

A.2 IBM AIX Systems

When debugging multi-threaded programs DDT is unable to get the register values or stack back trace
for any threads that are currently in a system call. DDT will display a single stack entry <system
call> instead. This is a limitation of AIX.

The Step Threads Together and Focus on Thread features are unavailable on AIX due to a lack of
operating system support.

When stepping through certain system library calls the program may run freely instead. This is
presently known to occur with the memset library call. This is due to a limitation of the Power
architecture.

Similarly DDT may fail to stop when an watchpoint is modified after a call to certain library calls.
This is also due to a limitation of the Power architecture.

A sample Loadleveller script, which starts debugging jobs on IBM AIX (POE) systems is included in
the {installation-directory}/templates directory.

A.3 AMD Opteron and Intel EM64T

When using a 64-bit operating system please note that it is essential to use the 64-bit version of DDT
on this platform. This applies regardless of whether the debugged program is 32-bit or 64-bit.

© 2009 Allinea Software 105

Distributed Debugging Tool v2.4

Multi-threaded and OpenMP debugging are not supported on Linux 2.4.x 64-bit kernels, such as SuSE
9.0. Please use a 2.6.x 64-bit kernel, such as found in SuSE 9.3 and above.

A.4 Intel Itanium

Ptrace, the kernel's debugging interface, in early 2.4.x kernels did not support rapid reading of all
registers in one single system call — and the Itanium has a lot of registers! Moreover, a kernel lock
prevents multiple processors in an SMP Itanium from entering this system call simultaneously — and
so it is possible to experience very slow debugging on early systems. Affected systems include
Redhat 2.1 and 3 AS. SuSE 9.0 does not suffer from this.

A second error, corrected in late 2005 by 2.6.15.x and higher kernels concerned reading memory —
some reads for MPI codes can take 10 times longer than an ordinary single processor job — due to an
erroneous memory page searching algorithm. It is unlikely, but still plausible that users could observe
this behaviour whilst debugging large data chunks.

For SGI Altix Itanium clusters, early versions SGI's MP Toolkit can a crash due to a library problem.
This is easily resolved. Compile your application with the extra linking flag - 1rt and try DDT again.

Heap Overflow Detection is not supported on Itanium-based machines. You may find that your
program stops with SIGBUS errors when this option is turned on. However, 'Fence Post' checking is
still available.

A.5 Intel Xeon/Pentium 32 bit

On some 32-bit Linux kernels, reading addresses above 0x80000000 takes an order of magnitude
longer than usual. This can cause normal debugging operations, such as listing the local variables or
getting the stack to take far longer than usual when DDT's guard pages are enabled. It can even cause
DDT to report that the process or underlying debugger has stopped responding. You can work around
this by disabling guard pages during debugging, or by setting the environment variable
DDT_PROCESS_TIMEOUT to 0. Future kernel revisions may address this issue.

OpenMP debugging is not supported on old Linux kernels. Supported systems include Redhat 9, SuSE
9.3 and above.

A.6 Sun SPARC

Heap Overflow Detection is not supported on SPARC-based machines. You may find that your
program stops with SIGBUS errors when this option is turned on. However, 'Fence Post' checking is
still available.

Members of structures are not shown in the Local Variables view (STRUCT is shown as the value
instead). Drag the variable to the Evaluate window to see the members.

A.7 Blue Gene

To run DDT for Blue Gene we recommend you install the VIR2 update from IBM available from
https://www-304.1ibm.com/systems/support/bluegene/index.html

DDT must be installed in a directory that is visible from the front end node(s), the service nodes and
the I/0 nodes.

If your Blue Gene does not allow the I/O nodes to connect directly to ports on the front end then DDT
must be run from a service node rather than the front end. Login to the service node using:

ssh -Y bgsn

© 2009 Allinea Software 106

Distributed Debugging Tool v2.4

then run DDT from the command line:

bgsn$ /gps/fs2/frontend-2/ddt-2.4/bin/ddt

Message queue debugging and attaching to running processes are not supported on the Blue Gene
architecture.

A.8 Cell Broadband Engine

See the Cell Broadband Engine Extensions document in the Help menu.

A.9 NEC SX8

See the SX8 Configuration Guide. If you did not have this file please contact support@allinea for a
copy.

© 2009 Allinea Software 107

mailto:support@allinea
mailto:support@allinea
mailto:support@allinea

Distributed Debugging Tool v2.4

B General Troubleshooting and Known Issues

If you have any problems with DDT, please take a look at the topics in this section — you might just
find the answer you're looking for. Equally, it's worth checking the support pages of the
www.allinea.com and making sure you have the latest version of DDT.

B.1 General Troubleshooting

B.1.1 Problems Starting the DDT GUI
If DDT is unable to start this is usually due to one of three reasons:
e DDT cannot connect to an X server. If you are running on a remote machine, make sure that

your DISPLAY variable is set appropriately and that you can run simple X applications such
as xterm from the same command-line.

e The licence file is invalid — in this case DDT will issue an error message. You should verify
that you have a licence file, that it is in a file called Licence in DDT's directory and check
that the date inside it is still valid. If DDT still refuses to start, please contact Allinea.

® You are using a licence server, but DDT cannot connect to it. See the section on licence
servers for more information on troubleshooting these problems.

B.1.1 Problems Starting Scalar Programs

There are a number of possible sources for problems. The most common is — for users with a multi-
process licence — that the Run Without MPI Support check box has not been checked. If DDT reports
a problem with MPI and you know your program is not using MPI, then this is usually the cause. If
you HAVE checked this box and DDT still mentions MPI then we would very much like to hear from
you!

Other potential problems are:

e A previous DDT session is still running, or has not released resources required for the new
session. Usually this can be resolved by killing stale processes. The most obvious symptom
of this is a delay of approximately 60 seconds and a message stating that not all processes
connected. You may also see, in the terminal, a QServerSocket message

e The target program does not exist or is not executable
e® The selected debugger cannot be found
e® The selected debugger has crashed

e DDT's backend daemon — ddt - debugger — is missing from DDT's bin directory — in this
case you should check your installation, and contact Allinea for further assistance.

B.1.1 Problems Starting Multi-Process Programs

If you encounter problems whilst starting an MPI program with DDT, the first step is to establish that
it is possible to run a single-process (non-MPI) program such as a trivial "Hello, World!" - and resolve
such issues that may arise. After this, attempt to run a multi-process job — and the symptoms will
often allow a reasonable diagnosis to be made.

In the first instance, verify that MPI is installed correctly by running a job outside of DDT, such as the
example in DDT's examples directory.

mpirun -np 8 ./a.out

© 2009 Allinea Software 108

http://www.allinea.com/
http://www.allinea.com/
http://www.allinea.com/

Distributed Debugging Tool v2.4

Verify that mpirun is in the PATH, or the environment variable DDTMPIRUN is set to the full pathname
of mpirun.

If the progress bar does not report that at least process 0 has connected, then the remote ddt -
debugger daemons cannot be started or cannot connect to the GUI.

The majority of such problems are caused by environment variables not propagating to the remote
nodes whilst starting a job. To a large extent, the solution to these problems depend on the MPI
implementation that is being used. In the simplest case, for rsh based systems such as a default
MPICH installation, correct configuration can be verified by rsh-ing to a node and examining the
environment. It is worthwhile rsh-ing with the env command to the node as this will not see any
environment variables set inside the . profile command. For example if your nodes use a
.profile instead of a . bashrc for each user then you may well see a different output when
running rsh node env than when you run rsh node and then run env inside the new shell.

If only one, or very few, processes connect, it may be because you have not chosen the correct MPI
implementation. Please examine the list and look carefully at the options. Should no other suitable
MPI be found, please contact Allinea for advice.

If a large number of processes are reported by the status bar to have connected, then it is possible that
some have failed to start due to resource exhaustion, timing out, or, unusually, an unexplained crash.
You should verify again that MPI is still working, as some MPI distributions do not release all
semaphore resources correctly (for example MPICH on Redhat with SMP support built in).

To check for time-out problems, set the DDT_NO_TIMEOUT environment variable to 1 before
launching the GUT and see if further progress is made. This is not a solution, but aids the diagnosis. If
all processes now start, please contact Allinea for further long-term advice.

B.2 Starting a Program

B.2.1 DDT says it can't find your hosts or the executable

This can happen when attempting to attach to a process running on other machines. Ensure that the
host name(s) that DDT complains about are reachable using ping. If DDT fails to find the
executable, ensure that it is available in the same directory on every machine. If you haven't already,
then try using the Configuration Wizard to set up DDT's attach feature.

B.2.2 The progress bar doesn't move and DDT 'times out’

It's possible that the program ddt - debugger hasn't been started by mpirun or has aborted. You
can log onto your nodes and confirm this by looking at the process list before clicking Ok when DDT
times out. Ensure ddt -debugger has all the libraries it needs and that it can run successfully on the
nodes using mpirun.

Alternatively, there may be one or more processes (ddt - debugger, mpirun, rsh) which could not
be terminated. This can happen if DDT is killed during its startup or due to MPI implementation
issues. You will have to kill the processes manually, using ps X to get the process ids and then kill
or kill -9 to terminate them.

This issue can also arise for mpich-p4mpd, and the solution is explained in Appendix B MPI
Distribution Notes and Known Issues.

If your intended mpirun command is not in your PATH, you may either add it to your PATH or set the
environment variable DDTMPIRUN to contain the full pathname of the correct mpirun.

If your home directory is not accessible by all the nodes in your cluster then your jobs may fail to start
in this fashion. To resolve the problem open the file ~/.ddt/config.ddt in a text editor. Change

© 2009 Allinea Software 109

Distributed Debugging Tool v2.4

the shared directory option in the [startup] section so it points to a directory that is
available and shared by all the nodes. If no such directory exists, change the use session
cookies option to No instead.

B.2.3 The progress bar gets close to half the processes connecting and
then stops and DDT ‘"times out'

This is likely to be caused by a dual-processor configured MPI distribution. Make sure you have
selected smp-mpich or scyld as your MPI implementation in the DDT Options window. If this doesn't
help, see Appendix B MPI Distribution Notes and Known Issues for a workaround and email
support@allinea.com for further assistance.

B.2.4 Program doesn't start, and you can see a console error stating
"QServerSocket: failed to bind or listen to the socket"

Ordinarily this message is not a sign of a problem - it is emitted when another DDT session, is running
and consequently the DDT master uses another socket instead. However, if you know this not to be
the case and your program is not starting, it's likely that a previous run of DDT has been unable to
terminate and release resources completely. This is known to occur occasionally for MPICH-GM. If
this happens, run /usr/bin/killall -9 ddt-debugger on your nodes - you can actually use
mpirun to do this for you.

B.2.5 DDT complains about being unable to execute malloc

Should this error message occur, often due to back-end debugger failure, it is possible to bypass this
step. Set the environment variable DDT_DONT_GET_RANK to 1 on the nodes and this will force DDT
to guess ranks, which may resolve the problem.

Sometimes this error is shown when DDT could not start your program at all. Check the arguments,
memory debugging settings, library paths and so on have the values you would expect and then
contact support@allinea.com for more help.

B.2.6 ‘The mpi execution environment exited with an error, details follow:
Error code: 1 Error Messages: “mprun:mpmd_assemble_rsrcs: Not
enough resources available”” error when trying to start DDT

This error occurs when running DDT on a Solaris machine. If you select more processes than you
have processors in your machine then mprun is not able to allocate the resources needed. To fix this
simply add the argument -W to the MPI Arguments box, this will tell mprun to wrap the processes and
will enable you to start your desired number of processes in DDT.

B.3 Attaching

B.3.1 Running processes don't show up in the attach window

This is usually a problem with either your remote-exec script or your node list file. First check
that the entry in your node list file corresponds with either localhost (if you're running on your local
machine) or with the output of hostname on the desired machine.

Secondly try running remote-exec manually ie. remote-exec 1s and check the output of this.
If this fails then there is a problem with your remote-exec script. If rsh is still being used in your
script check that you can rsh to the desired machine. Otherwise check that you can attach to your
machine in the way specified in the remote-exec script. If you still experience problems with your
script then contact Allinea for assistance.

© 2009 Allinea Software 110

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

B.4 Source Viewer

B.4.1 No variables or line number information

You should compile your programs with debug information included, this flag is usually -g.

B.4.2 Source code does not appear when you start DDT

If you cannot see any text at all, perhaps the default selected font is not installed on your system. Go
into the Session — Options window and choose a fixed width font such as Courier and you should now
be able to see the code.

If you see a screen of text telling you that DDT could not find your source files, follow the instructions
given. If you still cannot get DDT to show your source code, check that the code is available on the
same machine as you are running DDT on, and that the correct file and directory permissions are set.
If some files are missing, and others found, try adding source directories and rescanning — see section
1.4 for further instruction.

If the problem persists, drops us a mail at support@allinea.com!

B.5 Input/Output

B.5.1 Output to stderr is not displayed

DDT automatically captures anything written to stdout/stderr and displays it. Some shells (such
as csh and debuggers (such as dbx on Solaris) do not support this feature in which case you may see
your stderr mixed with stdout, or you may not see it at all. In any case we strongly recommend
writing program output to files instead, since the MPI specification does not cover stdout/stderr
behaviour.

B.6 Controlling a Program

B.6.1 Program hangs when you use Step Out

You should not use the Step Out feature from the main function of your program. This will cause the
debugger to hang. With some debuggers DDT will return a time-out error. Make sure you only use
Step Out inside functions.

Some back-end debug interfaces have been known to behave unpredictably when told to Step Out. If
you suspect this is the problem, check you can leave the function by putting a breakpoint on the next
executable statement and pressing Play instead. If this works, and Step Out doesn't,
support@allinea.com would love to hear from you!

B.6.2 Program jumps forwards and backwards when stepping through it

If you have compiled with any sort of optimisations, the compiler will shuffle your programs
instructions into a more efficient order. This is what you are seeing. We always recommend compiling
with -00 when debugging, which disables this behaviour and other optimisations.

If you are using the Intel OpenMP compiler, then the compiler will generate code that appears to jump
in and out of the parallel blocks regardless of your - 00 setting. Stepping inside parallel blocks is
therefore not recommended for the faint-hearted!

B.6.3 DDT sometimes stop responding when using the Step Threads
Together option

DDT may stop responding if a thread exits when the Step Threads Together option is enabled. This is
most likely to occur on Linux platforms using NPTL threads. This might happen if you tried to Run to

© 2009 Allinea Software 111

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

here to a line that was never reached — in which case your program ran all the way to the end and then
exited.

A workaround is to set a breakpoint at the last statement executed by the thread and turn off Step
Threads Together when the thread stops at the breakpoint. If this problem affects you please contact
support@allinea.com.

B.7 Evaluating Variables

B.7.1 Some variables cannot be viewed when the program is at the start
of a function

Some compilers produce faulty debug information, forcing DDT to enter a function during the
prologue. In this region, which appears to be the first line of the function, some variables have not

been initialised yet. To view all the variables with their correct values, it may be necessary to run or
step to the next line of the function.

B.7.2 Incorrect values printed for Fortran array

Pointers to non-contiguous array blocks (allocatable arrays using strides) are not supported when using
the default gdb debug interface. If this issue affects you, please email support@allinea.com for a
workaround or fix.

There are also many compiler limitations that can cause this. See section E for details.

B.7.3 Evaluating an array of derived types, containing multiple-
dimension arrays

The Locals, Current Line and Evaluate views will probably not show the contents of these multi-
dimensional arrays inside an array of derived types. However, you can view the contents of the array

by clicking on its name and dragging it into the evaluate window as an item on its own, or by using the
MDA

B.8 Memory Debugging

B.8.1 The View Pointer Details window says a pointer is valid but doesn't
show you which line of code it was allocated on

The Pathscale and PGI compilers have known issues that can cause this — please see the compiler
notes in section C of this appendix for more details. If this happens with another compiler, please
contact support@allinea.com with the vendor and version number of your compiler.

B.8.2 “Dmalloc library has gone recursive” error

Some threading libraries allocate memory before making threading locks available. This affects DDT's
memory debugging, which tries to lock memory allocation calls. You can try adjusting the number of
unlocked calls that are allowed at the start of the program by choosing the Custom settings in the
Memory Debugging Settings window and entering lockon=value, where common choices for
value range from 1 to 20. If this doesn't help, please contact support@allinea.com.

B.8.3 “mprotect fails” error when using memory debugging with guard
pages

This can happen if your program makes more than 32768 allocations — a limit in the kernel prevents
DDT from allocating more protected regions than this. You can set this limit manually by logging in
as root and executing echo 1048576 >/proc/sys/vm/max_map_count, or another limit of
your choice.

© 2009 Allinea Software 112

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

B.8.4 Allocations made before or during MPI_Init show up in Current
Memory Usage but have no associated stack back trace
Memory allocations that are made before or during MPI_Init appear in Current Memory Usage along

with any allocations made afterwards. However the call stack at the time of the allocation is not
recorded for these allocations and will not show up in the Current Memory Usage window.

B.9 Message Queues

B.9.1 When viewing messages queues after attaching to a process you
get a “Cannot find Message Queue DLL” error
DDT can only detect the message queue library automatically when the program is started from within

DDT. If you want to debug message queues when attaching, set the DDT_QUEUE_DLL environment
variable explicitly before you start DDT. For example:

DDT_QUEUE_DLL=/usr/local/mpich/1lib/libtvmpich.so ddt

Your MPI documentation should give you the file name for your implementation. The files needed for
LAM and MPICH are:

e LAM-1liblam_totalview.so
e MPICH- libtvmpich.so

Some MPIs will need to be configured with a specific command-line option to turn on message queue
debugging. For example, MPICH must be configured with the - -enable-debug argument.

B.9.1 When trying to view my Message Queues using mpich you get no
output but also see no errors

This is a known problem on the Opteron/EM64T system with 64/32bit compatibility. If the DDT
binary is 64-bit, but your target application is 32-bit, then the MPI message queue support library

needs to be 32-bit also — and most MPI implementations do not support this configuration. Contact
Allinea for further advice to obtain a 32-bit binary of DDT.

B.10 Miscellaneous

B.10.1 Some features seem to be missing (e.g. The Fortran Module
Browser)

This is because not all debuggers support every feature that DDT does and so they are disabled by
removing the window/tab by from DDT's interface.

B.10.2 Application working directory

For scalar programs, DDT will launch your application from the directory that you launched DDT
from. For parallel programs, this is also — mostly — true, but with one important difference: DDT
launches your program by running the mpirun command (or equivalent) from the directory DDT
started from. Thus, if your mpirun command is fairly conventional, your program will start from the
directory DDT started, but if mpirun sets a different launch directory, your program would start from
that directory.

B.10.3 “One of the debuggers DDT is communicating with has terminated
unexpectedly” error

This happens when one of the back-end debugging programs such as gdb has either been killed by the
system, or has crashed. Please report this error to support@allinea.com. In the past, some debuggers

© 2009 Allinea Software 113

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4
have had trouble evaluating complicated function arguments. You may find that setting the
environment variable DDT_NO_STACK_ARGS to 1 before running DDT works around this problem.
Some older operating systems have a number of issues (particularly with kernel 2.4.x and glibc 2.3.2)

that prevent 64-bit multi-threaded and OpenMP programs from being debugged reliably. SuSE 9.0
suffers from these problems, for example, whereas SuSE 9.3 does not.

B.11 Obtaining Support

If this guide hasn't helped you, then the most effective way to get support is to email us with a detailed
report. If possible, you should obtain a log file for the problem and email this to support@allinea.com.

You can generate a log file by running DDT like this:

ddt -debug -log log.ddt

Then simply reproduce the problem using as few processors and commands as possible and then close
DDT as usual. On some systems this file might be quite large; be prepared to gzip or bzip2 it
before attaching it to your email

© 2009 Allinea Software 114

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Distributed Debugging Tool v2.4

ALK ettt ettt et a ettt h e a et et ae e b et et et e at b et et en e st eseteeateeats 94, 97, 105
AN SEACKS. .e.vteueeristeereetestesestestesteseessessessesseessessessesssessessessesssassessessssssessessesssessessesssessasssssessssessssessssesns 50
AR ettt ettt et h ettt b e s bt e e st e b et et e st e h bt e e bbb et et eae e b e e bt ebe s 94
AADDIE ettt sttt b e et et et e bt et et et e e ae e Rt et e b e eat e te e at e e aseeentaeenseenns 35
ATGUITIEIILS. ...cvteeneeeuieeie et ettt et e e st e s te st e sut e st e satesatesatesatesatesatesatesueesates st esntesntesatesatesatessneesnsenessnseneesans 23
AATTAY S ettt ettt ettt st st e st e st e st e st e s st e s st e s ae e s ae e s s e e s he e s he e e a e e e b e e e s e e e b e e e bt e e Rt e e bt e bt e sReeeheeeRe e e e nreeesenraeeeeane 59
i 72 el 111 =SOSR 29

COMIMANGA LINE.....ioiiiieeieiesiieeetesteeeseesresteeee e e e s e s e e sessesseeseessessasssessessessesssessessessasssessessesssessenssessnses 31

[@70) 11 =101 =L o) o TP 12

HOSES Fluneieeeee ettt ettt ettt et et b ettt b s bt e et e bt s bt et et e bt bt enee s 30
BACKITACE. ... teeteeieeieeie ettt et e e et e et e et e e e e te et e et e e se e se e saessaesssessasssassaassasseesseassseassaassansssessnnsseesnnes 49
Bounds ChECKING.......coiueruiriiieieeeetetertee ettt ettt ettt ettt s bt et et e bt s bt et et e sbesate e sabeesabeesbeenane 72
BIDTOC ettt ettt ettt ettt s bt et e e st e et e et e e e bt e e st e e a b e e et e e e bbb e e e e e eeaabbaaaeeeens 95
BIrEAKPOINTS. ... viciieiieeeierieseetestesteeee e st e seste e testeste et et essessessaassessessasssassassessasssessessesssessansessesssessensessasssees 46

CONITIONAL ...ttt ettt ettt et b ettt s bt st et e e bbbt et e bt e b e ebeea 47

DIBLBTITIG. ... e eteveeieeteieettet et e ettt e st e st et et e st e st et e b e sbe s st e st e sesaeestessessesseentansessasssensansessassnsaesnseesnseesnnes 47

SAVINIG ...ttt ettt ettt et et et st s e st e bt et e eate st e eat e s at e e at e et e e a b e eat e et e eabesateeabeeateesnraeeennne 47
BUILIMPLL....ciieeee ettt ettt st et e s s et et e st e b et et enteness et eneenteneesesenteneesensesnseanseensenns 95
o ST Lttt ettt ettt b ettt a bt et et e a e b et et e a e st e b et et et eaeebe et et et eneeaesbetesateeas 80
(@70 1 =11 =T [0 o USRS 10, 26

STEE WAL ...ttt ettt sttt et b et et e e bbb et et s b et et et e st b et e et e et e eabeeaee 14
ConSIStENCY CRECKING. ...cc.viiteeiirieierieeisterterteet et st et e e ste st st e tesbesseestessessaessensessesnsensessessssssensessessnsessnses

H AP . ettt et ettt et st ettt st st st e et e et e et e et e et e et e sateeateeatesabeeareeens 73
010 LI 3 1 TSRS 29
CTAY KTttt ettt ettt et s ettt st e s et e e st e e s ba e s be e s st e s ate s abeessbeesasaesaseesstesanteesssaesnsaesasaaeessensnses 99
CrOSS-PrOCESS COIMPATISOM...c.uuttieurereteeereerirterittereteeeteesseessseesastessssessseessaesssaessssessssessssseeesssssnsssseeessssns 62
DIALA. ..ttt ettt s e et et e et e st e e bt e e bt e et e e e bt e et e e Rt e e st e e ab e e e bt e e nee e rteesnnraaaes

CRANZINE. ...cetiteeeiteteetet ettt ettt e e et e s e st et e st e saesss e sesse s st essessesnsentansesseesnsaesssaesnseesseesnnes 58
DIBDUGGET ...ttt ettt et ettt et et e b s bt e at et e b s bt et et e bt e bt et et e s bt e at et et e e s baeebee e baeennes 35
23T T3 o) o P R SRURR 25
FRATUTES. ...ttt ettt ettt s bt e s et e st e e st e e st e e e b e e e sbe e abaesaba e e bae e see e sbeessbaesasaesnsaesnseaans

OVEIVIBW ...t iieeeiteeite ettt et e e st e st e e s bt e st e e bt e s st e s sbeeeab e e s s st e s stes st e s saeeesseesasaeeasaesstaaesessnnsnnaaeeenns 6
Fence POSt CHECKINE.......cccvvevieriiniiieierisestetese st teseeseseestestesseesesaessaeseessessesseessessessasseensessseesnns 75, 106
FLOAUINE LICEIICES. ...ceutiteeiriieieniestetertesteetesteste st st et este st et e sesse st estessessaentessessesssentensessesnsessssesnssesnnsessnsens 9
210) 11 SO U USPPRRN 38
FOItran IMOGUIES........cccvieieeeeeeeee ettt ettt te et et e e e se e be e te e ba e se e s e esseesse e seenseenseeseenssseesnnsseesanns 57
FUNCHION LISTIMIE. c..vtiiiieiiiiiiieieieeete ettt sttt ee bt e st e st e st e s et e e sub e e s bae s sae s sbessabeeessaesnsbaaaeessnnssseaaesens 39
GUATA PAZES.....ectieeeeieriiiteetestesteetetestesteeseetesse s e s sae st essesseessassassesssessessessesssassansesseessessassesseessessenseessensesnes 106
HEAD OVEITIOW....c.uiiiiieeiiiteierieeestete st eteste e st ete st e ste s e e tessessasssessessessssssessessesssessessessesssenssesssseennns 75, 106
HOTKEYS.. ettt ettt ettt sttt et st st et e st s et et e ssesas e st e besae e st e st esbesaee st eseeseestensenbannteenes 44
HP Pttt ettt ettt sttt e et s s et et e s e e st esesseneeneesaesessensenesseasensansensesessensenseneeseansesnsesns 95
IBIM PE....eeieeeee ettt ettt sttt et st e et e s et et et et e st s et et et e nees et et enteneese s et enteneeseenteenteeas 97
i ettt ettt ettt a e bt a bt t et e a e b et et et e et e b et et et eaeeb et et et eaeesenbe e eneenee 54
TIIDUL ettt ettt st s et e et e e et e s bt e s bt e s a e e e et e e et e e e bae s bee s nt e e steeebeesbaeesennn 67
INSEALLALION. c..cueeuetet ettt ettt et et b ettt et s b et et et et e bbb et et b et e s ae e st e eaeeeae 7

GTAPNICAL ..c.uteieieieeteterteee ettt ettt ettt e et et s b e e st et e sesbe et estessessee st essassesssensensessneensseennsessnsaenns 7

B =D 1 [Ta L= TSR 9
INtE]l COMPILETS. .. ccveeieeeteecteeceese et ettt et e e et este s teeae e seessa e seesseeseenseesseanseensessseessesssesssenssnessnns 25, 102
INtel MESSAZE CHECKET......ccciiiieiieeieeieeieeie ettt ettt et e e e ste e te e te e tesssa et e esaessaesseessesssesnsessnsssaesansees 95
IIEEL VPt tet et e e e b stete e e bt s bttt s bt e e a e bt et e st et e at e bt b e b et eatebe et et et enteneens 95
LEE Xttt ettt ettt ettt et b ettt h bt e e a e b b et et e st e b et et e st e e bt e bt e b e e bt e bt ebeen 99
JOD SUDIMISSION.cveteuieiietiteeteent ettt ettt ettt ettt ettt et e b b e et esesbesbeteneesas 32

CANCEIING. ...ttt ettt sttt st et et s b st et et e s bt e at et e s b e eateatensesbe et e tensesaeentensees 32

(@F0) Vi =411 =10) o OO 15

© 2009 Allinea Software 115

Distributed Debugging Tool v2.4

ReGUIAT EXPIOSSION. ..ceutiteiiriiiietentietetente st st et ste st et e st e st st esbesbesae e tessessesseensensessaesnsaesaseesaseens 19, 32
JUIMIP T'O LNttt sttt et e e e st e st e s te e e steesssaessseesstesasteesnseesnseesnsaesseesnseesnnsesnns 39
DOUDIE CLICKING.....eevieieeieeiieeieeie ettt ettt te s teete e teete s te et e esee s st e sseesstesssasssesssesssesssseesensseesennsens 40
LAM/MPLL.c. ettt ettt ettt sae st et b e s bt et et e b e s bt et et e bt e ae e e et e ebt et e et e nbe e eaes 96
LECEISIIIZ e ettt ettt sttt et e bt e st e s bt e seat e s ut e e s ab e e sabeesasee s st e s st e ssteesaseesaseesasaessssnsaaaaeessnsnsrnnaens
LICEIICE FILES....cuiiteieieieiiet ettt ettt ettt sttt sb bt e et s b b et et e st e b b et esesbesbesaentenes 9
LICENCE SEIVET......oioiiiiiiiieieeceteteet ettt ettt et sa st ae st st nesaesme e e ne e smnes 88
MULti PIOCESS LICEIICE.euiiuieieiieitetesteeit ettt ettt ettt ettt sb e e at st et e s bt eat et e sbesbe et etesneeennes 23
SINGLE ProCESS LICEIICE. .. .ccieeieeieeieeieeteete et ete e teeteete e tessteeeeestessaeessessaesssasssasssasssasseesssesseesssenssenns 26
LLOG Tl ettt ettt ettt sttt et b bt et a bbbt h e bt e bt e bt e bt e beenbeenne 114
IMAIN WITHAOW. ...ttt ettt ettt et sttt ettt et et b et et et e bt e b et et et eaesbe st et et e st sbenbentesanenae
OVEIVIEW ...ttt ettt ettt st st b et s bt bt e at s bt e st s atsnt s nessnaeesennaaesssnnneess 37
MemMOTY DEDUZGINE.c.eeveerieeiririenierietetriertestete ettt be st ste e et s be st et et e st sbeste e et ebesbeneeneesbeesmeesaeesmeens 72
CRECK ValIdity ... eeeueeieieieeietestesiee ettt ettt sttt et sa e et b et et et e s bt st et e b e e st et ebesbe st ensennes 74
L@70) 11 =111 =L o) o TR 72
LD AIIES ettt ettt ettt et et ettt ettt b et et et e ae e b et et et e ae et et et eat e s e b et et et e beebenaentenn 72
IMEIMOTY STALISTICS. ..eeeureieeterreeerrrteretereteeertee ettt erteestteseateeeuteesubeesseessaesstessntessnteesseaesnsaesaseessntessneessneens 77
INPTOLECE FATIS..e.uiiiieieitieieieee ettt s e sttt s e st et e saesse e s esbassaessessessesnsensessseesn 112
MEIMOTY USAZE......oiiiiiiiiiiiiiiiiiecieectcerc ettt a e sa e s b e b s bt e bt sassassas s san s e ssnanaessans 75
MESSAZE QQUELIES......cerueerueereereeeteeteeteete et etesbeetesaeestesatesaseenseeaseeaseeaseeaseeaseeaseesessesasesasessessesnnseeesnnne 69
IMIPLL.. ettt ettt et ettt e b et a e e a et et e a e et e be b e e a e et et e e ae et et e e b e e at et e beehe et e et e e e beesbeeeane
L@70) 11 =01 =L 10 o TP 10
IMPT RANK. c..cteititeteiet ettt ettt ettt ettt et b et et e st b et et et e st e b e e b et e et e et e sabesabeeabeeates 40
IMIPT RANKS. ...cuetiieteieient ettt et ettt ettt et b ettt s bbb et e st e st s bt e st ent e st b e b et e st ebesbenbe e e st enbeesean 64
ITIPITULL ¢ttt etete et e e s st et b e st s et e st st e e e b e e me st e s e bt emt e e e ae e st et e e e sseemt et e st smeemeensesesaeennensesneenes 24
1001 2] 101 1 S S 25
TTOUDIESNOOTING.cueieieeiieiecteee ettt ettt e et e et e st e st e sst e s st e e seessaeereessaesssasnsseasennseasenseaennn 108
IMIPICH. ..ttt ettt e st et sb et e et e s b e e st et e b e e bt et et e e be e st e smbeesabeesabeesbeeeanee 25
GIVL ettt ettt ettt b e sttt s b et h et e bt et b e st et et e bt e at et et e st et e eane s 96
Pttt sttt a e bt et e e bR et e et e bt et et e e e e Rt e et b e e neeaeeaesareeenaeeeneees 96, 97
DA INIPA. oottt et h e sttt b e st e b e b e et et e b e e b e et e b e bt s ae et et e st eaaene e nseesans 96
MuUulti-Dimensional ATTAYS......cccecteeterrerierterereesterteseseetestes e st et este st et estessesatsutestessesatstessesseesaseesaseesane 59
IMIVAPICH. ...ttt ettt ettt sttt et s b et et e s bt s at et et e e st eat et e be e st et ebe st eatensenseenee 97
INEC MPLL... ettt ettt ettt et b et e e b e bt s st et e b e e bt et e e e s b e e st et et esbeemeeeenseesaees 97
OPEINGL....iiieeeee ettt ettt e et e e s bt e s bt e s bt e s st e s et e e et e e e bee s bt e s nt e e et e e et e e e rtaaeeee e e nnree 61
OPEIMP.....cne ettt ettt st e st e s et e st e s b e e s bt e s bt e s st e e et e e et e e e abee s bt e s neeseneeeeneeeearees 26
OMP_NUM_THREADS ..ottt ettt et ste st st st estesse st st et e ssesatestessessasnsensessseesnssesnees 26
OPENIMPLL.....eeiieeeeee ettt e e et e s te e s bt e s st e e e e st e e ssbeesssae s ste s stesastaesssaeessaesssaaessassnsraaaeesensnses 97
OPLEIOM. ¢ . veeeuteertteieteeeteee it e e teesettesetteeesteesteesbaesasaessseesastassstesesseessseesstesastesassessssessseesssaessssesessnnnns 94, 113
PaTalle] STACK VIBW .. .cuiiiieiieete ettt ettt ettt et et ettt et et et se st et e st e st esneens 50
POIITETS. ..ttt ettt a bbbt bbb s bt s bt e bt e bt e bt e bt e s s nneeesenne 58
POTHIANA GIOUD...c..eiiiieeiiiiiieriertetete sttt teste st et et ste st e e et e sse st estessessaessessassesssensensessssnsensessssesnssesnnsens 103
PrOCESS GIOUPS.....eutetetiriieteteieeteteete ettt st sttt st e sae st e ee b e st st e e e b e st st e ae s st eme et enesnteemneesanes 40
DIBLETITIG. ...ttt ettt ettt ettt ettt s bt et et e b e s bt et et e s beea e et et e s bt et et e bt sbe e s abe e e bt e e beeeanes 40
L@ U= Ta by T3\ 1 2 S 98
RAW COMIMANA. ... ctiteieieieietete ettt ettt et ettt sttt e e b st et e st e bt e st et e st ebe st et eate st sbessententeneenseenseens 66
REGISTETS. ..ottt ettt et e et e e st e s bt e s bt e s e at e e st e e s abeesasae s saesstesenteeenbaesansbtaeeeeennnranaeas
VIBWIIIE. .. eeeeieiteeeiteeee ettt et e et e srtesbt e st e e et e e s bt e saseesasaesmte s nteeeaseesaseesaseesanaesenteeenseessansseaaeessssnnnes 65
REMIOTE USEIS....eeiiieieeieeieeiteie ettt ettt et et e bt e bt et e bt e bt e bt e bt e bt e beebaesseeseesbeeseessteabaaesnnnsaessssaeesnns 35
RESTAITIIIZ. ... euteeteeteeteete ettt ettt ettt et et et e et e et e e bt e bt e bt e bt e bt e bt e seesbeebe e beesseesseesseesseesseesseenanes 45
RUNNING @ PTOGTAIM....cccutiiiiiieitieiieeiteete sttt et ssit e sttt s s ee e st e st e st e s sabessaseesssaesssaessssssnaeassssssnssenanens 23
SCOTC. ..ttt b ettt ettt b et et b e s bt et et e bt e a et e bt e bt et et e bt e a e et e et e e earees 24,94, 98
SCIUIL ..eueveurerureritesueeseesseesstesstessaesatesaaesaaesaaesaaesaaesaaeesaessaessaeesaesmtesatesbaesbaesaaesanesmaesmaesaneessnsaeessansaeesannaness 24
SOV ettt ettt bbbt a s bbb et et b e bt et e ae bt be s ae e s at e saeeeae 99
SAICH ...ttt sttt b et et b bt et e h e bt bt st et e eat e st e saeeeaee 39
SBSSIOM. ..ttt ettt et sttt s e st st st st s e st e e e et e e a e e st e s st e e ae e satesatesaeesatesaeeenbeeesnrenas
SAVITIZ ettt ettt sttt e s e et e s bt e st e st e e bt e et e e bt e e st e e st e e e bt e et e e e bt e e s te e s beeeasbbaaaeeeanns 38

© 2009 Allinea Software 116

Distributed Debugging Tool v2.4

SESSION IMIBIMLL.....eeuieiiieieeteete et et et e et e et e e st s e satesatesatesatesat e st e satesabesatesabesabesabeesanbaeessasaeessnsenens 45
N3] 2 OO 99
SIgNAl HANALIINE.......cciieieeiieieeeeceeeeeree sttt e st e et e st e sseesseesseesseesseesseesseesseesseesssasseesssesseesseesseesseensseeesan 54
LD AT T3 (o) 1T 0\ VA=) (o TR 54
Floating POINt EXCEPLION.cccirierierieeertertenieeeetestestesestessessessesssessessesseessessessesssessessessesssessessesssessenses 54
SegmMEeNtation fAUlL.........ccceciireriiriieriereeteteere ettt et ste st et e s sre e e e tessessaessesbeessaessbeesnnnesnsesnnnes 54
SIGEPE..... oottt ettt st e ettt st et e st e sae st e b e s b e s st et et e e h e st et e b e e Rt et e b e s b e et et e seeaeent e tenanaens 54
SIGILL. e ttteetteeteecte ettt et e st e et e s et e e st e e bt e e bt e s st e sasseeesseeenseasssaeessesasseeassaeensaeesssaaaeeesennsrraaaeeens 54
STGPIPE ...ttt ettt ettt ettt et e s et et et et e ae et et ententese s et entent e s et et e st e seenbeebeenseenne 54
SIGSEGV ..ttt ettt ettt et et e at e bt b et et e bt b et et et e bt e b et et et ae et e e ateeateeaee 54
STGUSRL....ctetet ettt ettt ettt et et e e bt e st et e bt e b et et e ateae b et et e st e bt b et et eaeebenbesbeennas 55
SIGUSRZ......teeetetet ettt ettt ettt st ettt e b et et e e bt s b et et et s st s b et et e st e bt b et et eaesbebesbeennae 55
SINGLE STEPPIME. c..teuteiiriietiierttetetertt ettt et s et e b e st e st et e s b e sae et e sesbesasessessesaaentesaseesnsaesnseesnssesnees 45
SIMIP...ceeeeeee ettt et ettt st e st s et e e bt e et e e bt e e a b e e e st e e et e e e bt e e ba e e nt e e s bt e et e e e bt e e taaaeeeeeannraaaaeeeannn
LT 0) 0t 1 Lol <IN EE 101, 108
SOIATIS. ..ttt ettt sttt ettt ettt ettt ettt 24,25, 26, 94, 104, 110, 111
SOIATIS DIBX ...ttt ettt ettt ettt et ettt et et a e e b et et et e st s b et et e st e bt e st et et e e bt e be e beebeenbean 104
110188 (eI Ole e [N 38, 52
BRI, e ettt ettt ettt et b e sttt s b e a et e b s he et et e st e sa et et e e sabaesabaeenbeesnnes 39
IMISSING FALES....cteieiieteertee ettt et ettt et b e s bt et et e s bt s at et et e s bt et et e s beeebee e st e ennee 38
SBATCRIIIE. .. e uteeeieeieciee ettt e et e e et e et e et e e e e e re e e e e e st e s st esseeaseesseesseesseeasaesseesseessaaeseasseesennseaesnnes 39
SEACK FTAIMIE. ... eteieteieeetete ettt ettt ettt et e b st et et e st e b et et e st e b e e b e b et enteseebe b et eneeseeateeaeenae 49
SEANAAIT EITOT ... oottt ettt ettt ettt b s bttt e bbb e e st e bt st e b et e st e besbe e bt e b e ebeenbeeaee 67
StANAATA OULPUL.....eerveeeieieiereeteteseseetestestestestessessesssessessesseessessassessssnsessessesssessessessssssessessesssessessassaensens 67
STATTINIE. ettt ettt ettt s et ae st et a e st et et e b e e st st e n e st st e e n e e s ne e e nae e nnees 45
STArting DD Tottt ettt ettt et s e st e et e st e et e s b e e b e eabe e bt e besabesaseeeaneeeesaneeeenn 22
SteP Threads TOGENET.......ccuiciieieeieeeeeeee ettt et e et e et e st e s e e s st e sseesseessaessssaaeensseeesnnsenas 43
N 11010] 0] 111 SO OO PO ST UPOUSPPRTRORPRRPR 45
SUDN CIUSLEITOOIS.uvveeiieeeeieieeiee ettt et e ee ettt e sesateeessaateesssseesssasaeessssssessssseesssssesesssssssssssssnnsnen 94, 104
SUPPOTL ..ttt ettt st st s et s st e s et e s bt e s st e st e s e ae e s e e e e e bt e s bt e e nte e e e e nrraaee e e e nrenees 21
SYNCHIONIZING PIOCESSES.....couerteieiriiriirieieteitet ettt ste st st e st e et sae st et et e st se e e e et esesbesae e eseemeesaee 48
TAD SHZES. ettt et ettt et b et e b b et et e be e bt et et e et e e s bt e e bt e e ebeeenee 38
A2V t=10) (=TT 39, 56
SEATCHING. ...ecuveuteetieteetereee ettt ettt e et e et e st e e st et e tesbe e s s es s e sesreessessessesssassenseasesssassensesseessesessnseeessees 39
VINC ettt ettt ettt ettt e b bt e e e a e bt e b et e st s b e b et et e st e bt b et e a e bt b et et eat e b et et et e saeens 35
WALCRPOINLS. ... eeteiirieiteieeereeterte ettt sttt ste st et et e sbesse et essessesssessessesssessensessesssensensesseensensensesssnesnn 49
WEBICOIME SCIOI......ceuieueeriieuteienieeitetetes e et e stes e st et estessesaeestessessesstestessesstensensessesseensensessesssensensesssensensesnns 22
WIHZATA. ..ttt ettt ettt e s a e st e b e st e s at e at et e b e e st et et e e bt eat et enbe e at e e ateeeabeesseenas 80
Creating a custom WizZard HIDIary........ceceeeieeieiieiececsceeeeee ettt ss e see st ae e sve e reesae e beeseee s 81
Using a custom Wizard LIDTAry........c.cceeveiirineeieieseseeeesieseseesese e sseseestesseessessessessaessessesssessnsnennes 83
X EOTWATAINIG. ...ceveeveeeieieiereeteie e et e et e s e s e et et e stesse et essessesssessesessaessassassessesssansessesssessassesssssessseesnseesnnns 35
XL ettt ettt ettt et h bttt h e e b et et et e bt s b e Aot e Rt e a e b et et e Rt bt b et en bt et e eab e et e eabeeaee 108

© 2009 Allinea Software 117

	Contents
	1 Introduction
	2 Installation and Configuration
	2.1 Installation
	2.1.1 Graphical Install
	2.1.2 Text-mode Install
	2.1.3 Licence Files
	2.1.1 Floating Licences

	2.2 Configuration
	2.2.1 Site Wide Configuration

	2.3 Advanced Configuration - Integrating DDT With Queuing Systems
	2.3.1 The Template Script
	2.3.2 OpenMPI, Altix, Blue Gene/P and Cray MPT
	2.3.3 Other MPIs
	2.3.4 Scalar Programs
	2.3.5 Defining New Tags
	2.3.6 Configuring Queue Commands

	2.4 Optional Configuration
	2.4.1 System
	2.4.2 Job Submission
	2.4.3 Remote Launch
	2.4.4 Fonts & Editor

	2.5 Getting Help

	3 Starting DDT
	3.1 Running a Program
	3.2 Notes on the MPICH Standard and OpenMPI options
	3.3 Debugging Single-Process Programs
	3.4 Debugging OpenMP Programs
	3.1 Debugging Multi-Process Non-MPI programs
	3.1 Debugging MPMD Programs
	3.1 Opening A Core File
	3.2 Attaching To Running Programs
	3.2.1 Using DDT Command-Line Arguments

	3.3 Starting A Job In A Queue
	3.4 Using Custom MPI Scripts
	3.1 Starting DDT From A Job Script
	3.1 Choosing The Right Debugger
	3.2 Notes on X Forwarding or VNC for remote users

	1 DDT Overview
	1.1 Setting The Font and Tab Sizes
	1.2 Saving And Loading Sessions
	1.3 Source Code
	1.4 Finding Lost Source Files
	1.5 Finding Code Or Variables
	1.6 Jump To Line / Jump To Function
	1.7 Editing Source Code

	2 Controlling Program Execution
	2.1 Process Control And Process Groups
	2.1.1 Detailed View
	2.1.2 Summary View

	2.1 Focus Control
	2.1.1 Overview of changing focus
	2.1.2 Process Group Viewer
	2.1.3 Breakpoints
	2.1.4 Code Viewer
	2.1.5 Parallel Stack View
	2.1.6 Input and Output (stdin, stdout and stderr)
	2.1.7 Playing and Stepping
	2.1.8 Step Threads Together
	2.1.9 Stepping Threads Window

	2.1 Hotkeys
	2.2 Starting, Stopping And Restarting A Program
	2.3 Stepping Through A Program
	2.4 Stop Messages
	2.1 Setting Breakpoints
	2.1.1 Using the Source Code Viewer
	2.1.2 Using the Add Breakpoint Window
	2.1.3 Pending Breakpoints

	2.2 Conditional Breakpoints
	2.3 Suspending Breakpoints
	2.4 Deleting A Breakpoint
	2.5 Loading And Saving Breakpoints
	2.6 Default Breakpoints
	2.6.1 Stop at exit/_exit
	2.6.2 Stop at abort/fatal MPI Error
	2.6.3 Stop on throw (C++ exceptions)
	2.6.4 Stop on catch (C++ exceptions)
	2.6.5 Stop at fork
	2.6.6 Stop at exec

	2.7 Synchronizing Processes
	2.8 Setting A Watch
	2.9 Examining The Stack Frame
	2.10 Align Stacks
	2.11 “Where are my processes?” - Viewing Stacks in Parallel
	2.11.1 Overview
	2.11.2 The Parallel Stack View in Detail

	2.1 Browsing Source Code
	2.1 Simultaneously Viewing Multiple Files
	2.2 Signal Handling

	1 Variables And Data
	1.1 Current Line
	1.2 Local Variables
	1.3 Arbitrary Expressions And Global Variables
	1.4 Help With Fortran Modules
	1.1 Viewing Array Data
	1.2 Changing Data Values
	1.3 Viewing Numbers In Different Bases
	1.4 Examining Pointers
	1.5 Multi-Dimensional Arrays in the Variable View
	1.6 Examining Multi-Dimensional Arrays
	1.6.1 Expression
	1.6.2 Dimensions
	1.6.3 Aggregate Function
	1.6.4 Filter
	1.6.5 Results
	1.6.6 Statistics
	1.6.7 Export
	1.6.8 Visualisation
	1.6.1 Auto Update

	1.7 Cross-Process and Cross-Thread Comparison
	1.8 Assigning MPI Ranks
	1.1 Viewing Registers
	1.2 Interacting Directly With The Debugger

	2 Program Input And Output
	2.1 Viewing Standard Output And Error
	2.2 Displaying Selected Processes
	2.3 Saving Output
	2.4 Sending Standard Input (DDT-MP)

	3 Message Queues
	3.1 Viewing The Message Queues
	3.2 Interpreting the Message Queues
	3.3 Deadlock

	4 Memory Debugging
	4.1 Configuration
	4.1 Feature Overview
	4.1.1 Error reporting
	4.1.2 Check Validity
	4.1.3 View Pointer Details
	4.1.4 Writing Beyond An Allocated Area
	4.1.5 Current Memory Usage
	4.1.6 Memory Statistics

	5 Checkpointing
	5.1 What Is Checkpointing?
	5.2 Checkpoint Support In DDT
	5.1 How To Checkpoint
	5.2 Restoring A Run-time Checkpoint
	5.3 Restoring A Persistent Checkpoint

	6 Advanced Data Display and C++ STL Support
	6.1 Using The Sample Wizard Library
	6.1 Writing A Custom Wizard Library
	6.1.1 Theory Of Operation
	6.1.2 Compiling A New Wizard Library
	6.1.1 Using A New Wizard Library
	6.1.2 The VirtualProcess Interface
	6.1.3 The Expression Class
	6.1.1 Final String-Enabled Wizard Library Example

	7 The Licence Server
	7.1 Running The Server
	7.2 Running DDT Clients
	7.3 Logging
	7.4 Troubleshooting
	7.5 Adding A New Licence
	7.6 Examples
	7.7 Example Of Access Via A Firewall
	7.8 Querying Current Licence Server Status
	7.9 Licence Server Handling Of Lost DDT Clients

	8 Using and Writing Plugins for DDT
	8.1 Supported Plugins
	8.1 Installing a Plugin
	8.2 Using a Plugin
	8.1 Writing a Plugin

	A Supported Platforms
	B MPI Distribution Notes and Known Issues
	B.1 Bproc
	B.2 Bull MPI
	B.3 HP MPI
	B.4 Intel MPI
	B.5 LAM/MPI
	B.6 MPICH p4
	B.7 MPICH p4 mpd
	B.8 MPICH-GM
	B.9 MPICH SHMEM
	B.10 IBM PE
	B.11 MVAPICH
	B.12 NEC MPI
	B.13 OpenMPI
	B.14 Quadrics MPI
	B.15 SCore
	B.1 Scyld
	B.2 SGI Altix
	B.3 Sun Clustertools
	B.4 Cray XT4

	C Compiler Notes and Known Issues
	C.1 Absoft
	C.2 GNU
	C.3 IBM XLC/XLF
	C.4 Intel Compilers
	C.5 Pathscale EKO compilers
	C.6 Portland Group Compilers
	C.7 Sun Forte Compilers and Solaris DBX

	A Platform Notes and Known Issues
	A.1 GNU/Linux Systems
	A.2 IBM AIX Systems
	A.3 AMD Opteron and Intel EM64T
	A.4 Intel Itanium
	A.5 Intel Xeon/Pentium 32 bit
	A.6 Sun SPARC
	A.7 Blue Gene
	A.8 Cell Broadband Engine
	A.9 NEC SX8

	B General Troubleshooting and Known Issues
	B.1 General Troubleshooting
	B.1.1 Problems Starting the DDT GUI
	B.1.1 Problems Starting Scalar Programs
	B.1.1 Problems Starting Multi-Process Programs

	B.2 Starting a Program
	B.2.1 DDT says it can't find your hosts or the executable
	B.2.2 The progress bar doesn't move and DDT 'times out'
	B.2.3 The progress bar gets close to half the processes connecting and then stops and DDT 'times out'
	B.2.4 Program doesn't start, and you can see a console error stating "QServerSocket: failed to bind or listen to the socket"
	B.2.5 DDT complains about being unable to execute malloc
	B.2.6 ‘The mpi execution environment exited with an error, details follow: Error code: 1 Error Messages: “mprun:mpmd_assemble_rsrcs: Not enough resources available”’ error when trying to start DDT

	B.3 Attaching
	B.3.1 Running processes don't show up in the attach window

	B.4 Source Viewer
	B.4.1 No variables or line number information
	B.4.2 Source code does not appear when you start DDT

	B.5 Input/Output
	B.5.1 Output to stderr is not displayed

	B.6 Controlling a Program
	B.6.1 Program hangs when you use Step Out
	B.6.2 Program jumps forwards and backwards when stepping through it
	B.6.3 DDT sometimes stop responding when using the Step Threads Together option

	B.7 Evaluating Variables
	B.7.1 Some variables cannot be viewed when the program is at the start of a function
	B.7.2 Incorrect values printed for Fortran array
	B.7.3 Evaluating an array of derived types, containing multiple-dimension arrays

	B.8 Memory Debugging
	B.8.1 The View Pointer Details window says a pointer is valid but doesn't show you which line of code it was allocated on
	B.8.2 “Dmalloc library has gone recursive” error
	B.8.3 “mprotect fails” error when using memory debugging with guard pages
	B.8.4 Allocations made before or during MPI_Init show up in Current Memory Usage but have no associated stack back trace

	B.9 Message Queues
	B.9.1 When viewing messages queues after attaching to a process you get a “Cannot find Message Queue DLL” error
	B.9.1 When trying to view my Message Queues using mpich you get no output but also see no errors

	B.10 Miscellaneous
	B.10.1 Some features seem to be missing (e.g. The Fortran Module Browser)
	B.10.2 Application working directory
	B.10.3 “One of the debuggers DDT is communicating with has terminated unexpectedly” error

	B.11 Obtaining Support

	C Index

